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Abstract 
 
We are developing techniques for safeguarding the remote 
operation of lunar rovers.  This paper presents two 
complementary techniques: One, based on stereo vision, 
evaluates the traversability of paths the rover could follow, 
and produces preferences for steering directions.  The other, 
based on laser proximity sensing, looks for hazards 
immediately in front of the rover, commanding an 
emergency stop if any are detected.  The stereo-based 
technique provides reliable obstacle avoidance, but operates 
fairly slowly, while the laser-based technique operates 
faster and is more conservative in its evaluations.  The 
stereo-based obstacle avoidance planner has been used to 
drive a rover over ten kilometers in outdoor, natural terrain.  
The laser proximity system has been tested, and is currently 
being integrated with the rest of the rover system. 

1. Introduction 

We are investigating techniques to help humans operate 
rovers on the Moon.  Our work belongs to a larger Lunar 
Rover Initiative, which aims to conduct a lunar mission, 
sponsored by private ventures, dedicated to returning to the 
Moon before the turn of the Millennium [3].  The mission 
would have rovers navigate hundreds, if not thousands, of 
kilometers over several years, visiting sites of geological 
and historical interest.  The research reported here involves 
techniques for planning rover motions that are (locally) safe 
and easily traversable. 
 
Our motivation starts with the observation that teleoperation 
of mobile robots is often fatiguing and disorienting for 
operators.  This is especially true for remote Lunar driving, 
in which the environment is foreign, and operators would 
have to contend with up to a five second communications 
time delay. While an alternative scenario is to have the 
rover drive itself autonomously, the ability to teleoperate 
the vehicle constitutes much of the appeal of the mission.  
Furthermore, the current state-of-the-art is not reliable 
enough to enable the robot to make correct decisions in 
every conceivable situation. 
 
Our philosophical approach is to combine the relative 
strengths of the human operator and the rover to produce 

reliable, goal-driven navigation.  The idea is to take 
advantage of the human’s common sense and long-range 
planning capabilities and the rover’s ability to sense and 
react quickly and dependably.  The idea, which we call 
“safeguarded teleoperation,” [9] is to let the humans guide 
the rover, but have software running on-board that 
safeguards the vehicle by preventing dangerous movements, 
or biases the vehicle's actions towards more easily 
traversable areas of the terrain. 
 
Our implementation approach is systemic and layered.  By 
systemic, we mean that we are building a complete, 
integrated robot system — from real-time control to user 
interface.  By layered, we mean that higher-level system 
functionality is built on top of lower layers.  For example, 
the lowest level — the real-time control — accepts 
commands in the form of steering angle and velocity.  Local 
obstacle avoidance uses this layer to autonomously traverse 
terrain.  The safeguarded teleoperation combines the local 
obstacle avoidance and user interface layers to produce 
safe, reliable navigation. Advantages of the layered 
approach are increased flexibility (the system can be 
commanded at any layer) and increased reliability (if 
designed correctly, the reliabilities of each layer 
complement one another). 
 
Central to our approach is on-board software to sense and 
react to terrain features.  The work reported here consists of 
two techniques: one for local obstacle avoidance based on 
stereo vision, and one for hazard detection based on a laser 
proximity rangefinder. 
 
The rationale for using two techniques based on different 
sensing modalities is that they effectively complement one 
another.  Stereo-based vision provides a relatively wide, 
medium-range view of the terrain (three to seven meters in 
front of the vehicle), but is rather slow (less than 1 Hz) and 
has only fair resolution (5-10 cms).  The local obstacle 
avoidance planner that uses the stereo data is rather 
sophisticated, and is used to make decisions about where the 
rover should, and should not, be heading.  The laser-based 
proximity sensor provides high-resolution (under a 
centimeter) data at a fast rate (minimum of 4 Hz), but in a 
relatively narrow band close to the front of the vehicle (100-
150 cms).  The hazard detection software uses simple, 
conservative heuristics to determine if a variety of hazards 
are present, and acts to stop the vehicle in an emergency.  



Although we presume that the stereo system will keep the 
rover out of most hazardous situations, the laser system acts 
as a short-range backup.  The combination increases the 
overall reliability of the navigation system, and increasing 
our confidence that the rover will not accidentally drive 
over a cliff or become stuck. 
 
Both techniques have been implemented and are being 
tested on a prototype wheeled rover.  In particular, in one 
experiment the stereo-based local obstacle avoidance 
system was used to drive the rover safely over ten 
kilometers in outdoor, natural terrain.  We are currently 
integrating the laser-based hazard detection subsystem, and 
will test the complete system by traveling autonomously 
over greater distances and rougher terrain. 
 

 
Figure 1. The Ratler Rover 

2. The Rover And Its Navigation System 

While we await the completion of our new lunar rover [1], 
we are using a vehicle designed and built by Sandia 
National Laboratories [5] as a testbed to develop the remote 
driving techniques needed for a lunar mission. The Ratler 
(Robotic All-Terrain Lunar Exploration Rover) is a battery-
powered, four-wheeled, skid-steered vehicle, about 1.2 
meters long and wide, with 50 cm diameter wheels (Figure 
1). The Ratler is articulated, with a passive axle between the 

left and right body segments. This articulation enables all 
four wheels to maintain ground contact even when crossing 
uneven terrain, which increases the Ratler’s ability to 
surmount terrain obstacles. The body and wheels are made 
of a composite material that provides a good strength-to-
weight ratio. 
 
Sensors on the Ratler include wheel encoders, turn-rate 
gyro, a compass, a roll inclinometer, and two pitch 
inclinometers (one for each body segment).  There is a color 
camera for teleoperation, and we have added a camera mast 
and four black-and-white cameras for stereo vision, and an 
Accuity laser proximity rangefinder. 
 
Figure 2 presents a block diagram of the overall navigation 
software system.  The real-time controller handles servoing 
of the motors, collecting and processing of the internal 
sensor signals (encoders, compass, inclinometers), and 
dead-reckoning calculations [4].  It runs on a 286 and a 486 
CPU board, connected by an STD bus, and communicates 
with the rest of the system via serial link.  The laser 
subsystem (Section 4) also runs on-board, on another 486 
board. 
 
The controller module (Figure 2) transforms higher-level 
commands (steering angle and velocity) into the lower level 
commands (individual wheel velocities) used by the real-
time controller, and transforms raw sensor signals into more 
familiar units (radians and meters).  The stereo and obstacle 
avoidance planner modules work together, taking pairs of 
images and producing recommendations on which paths are 
best for the rover to traverse. The arbiter module combines 
information from the planner and user interface subsystems 
to select paths that satisfy both user preferences and vehicle 
safety [7, 8].  Each module is a separate process, running 
concurrently, and communicating with one another via 
Ethernet, using the message passing protocol of the Task 
Control Architecture [10].  Currently, these modules run 
off-board, on two Sparc 10 workstations, but we are in the 
process of porting them (except for the user interface) to run 
on-board, on two Pentium processors running Linux. 
 



 
Figure 2. Navigation System Block Diagram 

3. Stereo-Based Obstacle Avoidance 

3.1 Stereo Vision 

The local obstacle avoidance planner uses stereo-based 
terrain elevation data to determine safe paths for the rover 
to travel.  The stereo module takes its input from black-and-
white CCD cameras, mounted on a motion-averaging mast 
(Figure 1).  The camera images are first rectified to ensure 
that the scan lines of the image are the epipolar lines [6]. 
The best disparity match within a given window is then 
computed using a normalized correlation.  Disparity 
resolution is increased by interpolating the correlation 
values of the two closest disparities.  Various heuristics are 
employed to minimize outlier values (caused by false stereo 
matches), for example, by eliminating low-textured areas 
using lower bounds on the acceptable correlation values and 
variance in pixel intensity [4, 8]. 
 
The output of the stereo subsystem are sets of (x, y, z) 
triples, given in the camera coordinate frame, along with the 
pose of the robot at the time the images were acquired.  
Using the pose information, the obstacle avoidance planner 
transforms the (x, y, z) values into world coordinates to 
form a (non-uniformly distributed) terrain elevation map. 
 
To make the stereo computation tractable, the planner 
requests only a small segment of the stereo image (about 
2%), at reduced resolution (every fifth row and column).  
Experiments show that this is sufficient to reliably detect 
features on the order of 20 cm high. 

3.2 The Ranger Planning Algorithm 

Our first local obstacle avoidance planner was an adaptation 
of a planner, called Ranger, that was developed at CMU for 
ARPA’s Unmanned Ground Vehicle (UGV) program for 
cross-country navigation [2].  This planner enabled the 
rover to travel up to a kilometer in mild terrain [4, 8, 9]. 

 
The Ranger algorithm works by analyzing the paths the 
vehicle would traverse along the terrain for a number of 
different steering angles, and choosing the one that 
evaluates as the safest.  It merges individual stereo-
produced elevation maps to create a 25 cm resolution grid 
map up to seven meters in front of the rover.  Map merging 
is necessary because the limited fields of view of the 
cameras do not allow a single image to view sufficient 
terrain. 
 
Ranger then projects the rover’s state (position, roll, pitch, 
yaw) as it travels along a path.  The projection is based on a 
desired steering angle, the vehicle dynamics, and the 
underlying terrain.  The vehicle’s current pose, its dynamics 
and the steering angle are used to determine the position 
and yaw of the vehicle at the next time step.  The height of 
the terrain under the wheels is then used to determine the 
roll and pitch of the vehicle at that point. 
 
Once a projection of the vehicle along a path has been 
computed, the vehicle state at each point in time is 
evaluated.  Four criteria are used to determine the 
“goodness” of a path: roll, pitches of the left and right body 
segments of Ratler, and number of known terrain points the 
vehicle crosses along the path.  If any of the criteria exceed 
a given threshold of safety (such as excessive roll or pitch), 
the whole path is given a very low evaluation. Otherwise, 
the criteria are normalized to the range [0..1] and are 
combined using a linear weighted function.  This 
determines the overall merit of choosing that steering angle 
for the rover.  These evaluations are then combined with the 
user's preferences to determine the overall best command, 
which is then sent to the rover to be executed.  The cycle 
time for this process is about 1-2 seconds, with the stereo 
computations taking up about 75% of the time. 

3.3 The Morphin Planning Algorithm 

While the Ranger algorithm has worked well for high-speed 
navigation of Humvees, it is not entirely well-suited to the 
much smaller, and slower, lunar rover.  As is often the case 
in robotics, the problems are mainly attributable to an 
abundance of noise, particularly in the stereo-produced 
terrain maps and the dead-reckoning.  The main effect of 
the noise is to make it difficult to cleanly merge terrain 
maps acquired from separate images, which is required by 
the Ranger algorithm since it uses only a small percentage 
of each image.  Map merging often produced artifacts in the 
map, such as crevasses and ridges, which the rover would 
refuse to cross.  This is less of an issue with the Humvees, 
since they can cross much taller obstacles.  We tried several 
merging techniques in an attempt to minimize the artifacts, 
but none was robust enough to yield consistent driving 
results. 
 



Another effect of noisy terrain data is that, because of the 
rover’s relatively short wheelbase, small deviations in 
perceived terrain elevation under the wheels produced 
relatively large changes in estimated roll and pitch.  For 
example, a 20 cm “spike” in the terrain map (not 
uncommon) produces a 13 degree change in pitch, given a 
90 cm wheelbase.  Thus, it is often difficult to distinguish 
noise from steep bumps.  This same problem makes it 
difficult to reliably determine whether high-centering might 
occur, since the clearance of the rover is not much more 
than the noise in the map. Finally, the Ranger algorithm 
presumes that the rover can track the path exactly, and does 
not account for uncertainty in the execution of commands or 
for uncertainty in the vehicle dynamics models used to 
project paths. 
 
To address these problems, we modified parts of the Ranger 
algorithm, creating an algorithm called Morphin (a “power” 
Ranger).  In contrast to the path-based approach of Ranger, 
Morphin is area-based: it analyzes patches of terrain to 
determine the traversability of each patch, and evaluates the 
traversability of a path by determining the set of patches it 
travels through.  As such, it is more akin to the terrain 
navigation planner of [11]. 
 

 
Figure 3. Local Obstacle Avoidance Planner 

 
Each local terrain map, produced from a single stereo pair, 
is analyzed independently. The terrain is divided into 
overlapping patches, each 125 cm on a side, with patches 
offset by 25 cm from one another.  Thus, each terrain point 
contributes to 25 patches (Figure 3).   
 
To determine traversability, a plane is fit to each patch 
using least-squared error.  To avoid redundant computation, 
statistics (e.g., sum of X, sum of XY) are collected for 
smaller 25 cm squared patches and then aggregated to 
determine the plane parameters for each 125 cm squared 
patch.  The plane parameters are used in determining the 
vehicle roll and pitch (see below), and the residual to the 
plane fit is used to estimate the roughness of the terrain.  
Two “roughness” measures are computed: one based on the 
residual in fitting the plane to the whole patch, and one 
based on the residual of each small (25 cm squared patch).  

The former indicates the roughness of the overall area, 
while the latter indicates if the patch is bumpy/spiky.  
Finally, two factors are used to assess the confidence in the 
evaluations: the number of stereo-generated terrain points in 
a patch and the spatial distribution of these points (based on 
an entropy-like measure), which is used to ensure that the 
points are representative of the patch as a whole. 
 
Morphin then projects the path of the rover over the terrain 
patches.  Unlike Ranger, which uses a discrete numerical 
simulation to project paths, Morphin uses closed form 
solutions to calculate the intersections between arcs of a 
circle and the terrain patches.  Morphin then sums the 
traversability metrics of the intersecting terrain patches, 
weighted by the length of the intersection between the arc 
and terrain patch.  For each patch, Morphin determines roll, 
pitch, roughness, and confidence in the data.  The pitch of 
the vehicle is easily calculated as the slope of the line along 
the plane in the direction of the current heading (yaw).  A 
similar calculation yields the vehicle roll.  The roughness 
and confidence measures are calculated as described above.  
If there are overlapping patches from different images, only 
the one associated with the most recently acquired image is 
used (given the dead-reckoning uncertainty of the rover, we 
find this to be much more effective than trying to combine 
overlapping evaluations in some way).  Then, as with 
Ranger, the criteria are combined using a linearly weighted 
function. 
 
While the path projection approach of Ranger (numerical 
simulation) produces higher fidelity paths (since dynamics 
and the effects of moving on uneven terrain can be taken 
into account), Morphin's geometrical approach is much 
more efficient, and is adequate for the task since the rover's 
dead-reckoning is not accurate enough to warrant a high 
fidelity approach.  In fact, we are extending Morphin to 
explicitly deal with the uncertainty in the rover's heading: 
for each nominal steering angle, we project a number of 
paths (currently five) that differ slightly in the steering 
angle.  The evaluation for each of these paths is weighted 
by the probability of the rover following that path (under an 
assumption of Gaussian distribution from the nominal 
steering angle). 

3.4 Performance 

To evaluate the strengths and weaknesses of the stereo-
based approach, we performed extensive field trials.  The 
test site (Figure 4) consists of soil, crumbled asphalt, loose 
gravel, scree, and some grassy vegetation.  Obstacles to 
rover passage include soil mounds, depressions, cliffs at the 
river bank, building walls, metal pipes, cement blocks, 
railroad ties, trees, and bushes. 
 



 
Figure 4. Terrain For Rover Navigation Experiments 

In one particular experiment, the rover traveled more than 
10 km over a three-day period.  During the experiment, the 
rover operated autonomously over 98% of the time, 
successfully avoiding discrete obstacles, while averaging a 
speed of 15 cm/sec.  This is an order of magnitude farther 
than we were able to traverse with the Ranger algorithm, 
and needed about one-third the amount of teleoperated 
control.  This experiment demonstrated the superiority of 
the Morphin algorithm for our rover.  Morphin addresses 
the problem of noisy data by aggregating independent data 
points into an overall statistic, thus dramatically lessening 
the impact of any single point.  While this aggregation can 
sometimes cause the rover to behave more conservatively 
than would otherwise be warranted, in our application it is 
better to be too conservative than to allow the rover to head 
into danger. 

4. Laser-Based Hazard Detection 

While the stereo-based planner is fairly reliable, there are 
several hazards that it has trouble detecting.  The major 
weakness is that the stereo vision often cannot detect 
depressions/craters, reporting them as unknown areas.  In 
addition, the limited resolution of the stereo, combined with 
the large look-ahead distance (three to seven meters) means 
that small obstacles (on the order of 10-20 cms) may be 
overlooked.  These can cause problems if the rover tries to 
straddle them, which can cause high-centering (hitting the 
bottom of the vehicle). 
 
To detect such hazards, we have developed a hazard 
detection technique that uses a high-resolution, laser 
proximity sensor.  The requirements for this subsystem are 
that it must be very robust in detecting hazards and have 
very good response time.  These requirements have driven 
the design and implementation of the laser-based 
safeguarding system. 

4.1 System configuration 

The sensor, an Acuity 3000-LIR laser ranger, sends a beam 
towards a rotating mirror projecting a plane of infrared laser 
light at a 45 degree angle to the ground. It is able to image 
the ground with a resolution of under a centimeter in all 
three dimensions at a range of about 100-150 cm in front of 
the rover. The effective field of view is limited by the 
effective angle of incidence and is, in practice, about 90 
degrees producing a 4 m long laser line on the ground in 

front of the rover.  The scanner can produce data at various 
rates, depending on the number of samples per scan and the 
required precision.  In the runtime configuration, a scan is 
available every 25-50 msecs. 
 
An on-board computer collects the range and angle readings 
and tests them for validity.  The data is then linearized and 
transformed to obtain an array of (x, y, z) triples of the 
terrain with respect to the rover’s local coordinate frame 
(i.e., this transformation does not adjust for the angular 
inclination of the vehicle).  The resulting laser data are 
processed, looking for evidence of depressions/drop-offs 
and obstacles that might lead to the vehicle being stuck 
when attempting to drive over them. When such hazards are 
detected, the subsystem issues an emergency stop command 
to the vehicle and notifies the local obstacle avoidance 
planner (Morphin) of the hazard, so that it can incorporate 
that information into its planning. 
 
As a baseline configuration the position information 
available on the rover is not incorporated into the detection 
of the hazards. This frees the laser safeguarding system 
from dependence on the controller module maintaining 
accurate dead-reckoning information, and hence makes it 
less dependent on sensor failures (encoders, compass).  
Even if all other navigation systems should fail the rover 
can still be controlled safely in teleoperated mode by the 
laser safeguarding.  Besides being robust, this configuration 
involves less processing, which leads to a faster update rate.  
While incorporating pose information is an option, and 
might possibly produce better hazard detection, doing so is 
non-trivial since the desired cycle and reaction times of the 
laser subsystem are considerably smaller than the inherent 
time constants of the inclinometers.   Our approach instead 
aims at identifying statistics of the scans that are insensitive 
to sudden (and unknown) inclinations.  By using these,  we 
have found this baseline configuration to be sufficient for 
all but the most extreme rover configurations. 

4.2 Data acquisition 

The first step in processing a laser scan is to determine the 
integrity of the laser system and to perform self-diagnostics, 
if necessary.  The next step is to remove invalid data and to 
determine if the spatial density of the remaining data is high 
enough to reliably calculate the hazard metrics. 
 
These calculations use a number of laser ranger sensor 
signals: absolute encoder, incremental encoder, range, 
temperature, data out of range, buffer overflow, intensity of 
reflected laser light, and ambient light.  First the motor 
subsystem is checked through a test of correct motion of the 
mirror. This is done using three measures: 

• Is zero pulse captured? (absolute encoder) 
• Full cycle loaded? +/- 45 degrees in front of the vehicle 

captured.  



• Is motor spinning? (incremental encoder) 
 
The zero pulse of the absolute encoder synchronizes the 
angles captured by the incremental encoder.  If this pulse is 
missed, the absolute orientation of the sweep is unknown 
and the data is of no value.  Both the capture of the 
synchronizing zero pulse and a successful acquisition of a 
full cycle depends on the speed of the mirror. If the mirror 
is spinning too fast, the zero pulse may be missed and, if 
spinning too slowly, a full range may not be available 
within the number of samples recorded. As the mirror 
system has relatively slow dynamics, the system is designed 
so that the zero pulse or full angle measures have to fire a 
number of times before the spinning of the motor is tested. 
This avoids erroneous fault detection during start-up and 
temporary disturbances. 
 
In addition to determining whether the mirror is spinning 
correctly, a check is made of the motor temperature and 
whether there are internal errors (e.g., buffer overflow) on 
the SCSI interface board (which indicates that samples have 
been lost).  Finally the system assesses whether the density 
of reliable data is sufficient.  A common problem is that the 
laser beam hits a terrain point which does not reflect enough 
light to make an accurate range estimation. This can be due 
to the angle of incidence, non-diffuse reflection, or a low 
reflectance of the object being measured (dark surface). 
This results in an unreliable datum, which can confound 
subsequent processing. A dependable way to detect zones of 
unreliable data is high variance between adjacent range 
readings. 
 
All checks, except for the variance in range estimates, are 
very fast as their input are direct sensor signals, which are 
more or less dedicated for integrity analysis purposes. Only 
the high-variance test needs a non-trivial amount of 
computation to determine status.  In any event, data 
acquisition is fast: including integrity checking and data 
testing, it can be done in about 180 msecs (including 35 
msecs for the laser to generate range data). 
 
When a problem occurs, corrective action is necessary. For 
some of the very low level problems, like mirror motion, 
appropriate actions can be directly associated with the 
problem.  In the case of mirror motion problems, new scans 
are commanded to see if the problem was just a result of 
spurious unfavorable conditions.  For other problems, such 
as high temperature, different actions can be taken 
involving other systems of the rover (like applying extra 
cooling, shutdown or seeking shade). Since other 
subsystems may also be affected by these kind of problems, 
in most cases the laser subsystem will just discard the data 
as invalid, and leave it to other systems to correct the 
problem. 

4.3 Hazard detection metrics 

Since the laser line hits the ground fairly close to the vehicle 
(100-150 cm), detection must be made quickly in order to 
react in time.  For this reason, we have chosen to define 
simple heuristic metrics for each type of hazard that we 
want the laser to detect. These metrics are defined in terms 
of a single scan of the proximity sensor, so that no 
information needs to be saved between scans (increasing 
robustness and decreasing computation). 
 
When designing the metrics two approaches were 
considered. One approach evaluates whether the elevation 
of the surface in front of the rover (represented in the 
rover’s local coordinate frame) exceeds the capability of the 
rover.  While this approach is fairly general and 
computationally very simple, it has the problem that  the 
apparent elevation of the terrain in front of the rover is a 
function of both the actual terrain height and the rover’s 
current inclination (e.g., if the front wheels of the rover are 
on small rocks, the elevation of the terrain one meter in 
front of the rover appears lower than it actually is).  Thus, 
while true hazards will be detected reliably and quickly,  
there are situations where potential hazards will be detected 
erroneously, and the vehicle will be stopped unnecessarily.  
 
The other approach involves identifying signatures of 
different landscape formations that are invariant to the 
motions that occur when driving over minor obstacles. For 
example, when obliquely approaching a downward slope, 
the range measurements will gradually increase starting at 
the point where the laser line intersects the beginning of the 
slope, forming an “elbow bend.” This characteristic shape is 
evident regardless of whether the front of the rover is 
elevated by a rock, and so is less likely to detect hazards 
erroneously.  However, in the signature approach it is 
difficult to quantify the danger a profile constitutes to the 
vehicle. For example, when approaching a minor 
downwards slope from different angles, the shift in range 
varies and so the steepness of the slope cannot be known. 
Thus, it is difficult to quantify what constitutes a real 
hazard.  In addition, in the signature approach much more 
processing has to be performed, as the number of possible 
landscape feature signatures is relatively large compared to 
the number of rover limitations (see Table 1).  
 

Table 1. Hazards to be detected 

Rover limitation  Landscape danger Importance 

Positive elevation 
(step) 

Small, medium 
and large rocks 

Step in landscape 
(broken rock 
surface) 

Boulders 

Less important. 

Stereo is reliable 



Negative 
elevation (ditch) 

Ditch 

Craters 

Step in landscape 
(broken rock 
surface) 

Important. 

Stereo has poor 
performance 
here. 

Stuck on belly Objects on cross 
slopes 

Equally good 

 
Another problem with the interpretation approach is that the 
set of features may not cover all possible landscapes 
encountered. Hence, safe operation would not be 
guaranteed. To ensure safety (at the cost of sometimes 
stopping erroneously), it was decided to employ the direct 
method based on the capabilities of the rover.  Three hazard 
types are considered: 

• Maximum traversable step (curb-like, head on) 
• Maximum traversable ditch (curb-like, head on) 
• Belly clearance 

 
As the metrics are defined in terms of a single scan, no 
information is available about the transition from the 
surface currently under the rover to the scanned surface at 
the laser line. The transition must therefore be treated as a 
worst case, which is a step-like transition at the laser line. 
Also, since the laser subsystem does not know the current 
vehicle steer angle, to be safe it must analyze the complete 
laser line.  For the step and ditch metrics, this translates into 
defining a simple upper and lower threshold (respectively) 
directly on the 3D elevation profile (Figure 5).  The 
thresholded data is spatially filtered to prevent spurious 
signals from firing the metric. A median filtering is used, 
which is quite fast since it operates in the binary domain. 
 
The belly hazard metric first estimates the slope by linear 
regression and then equalizes the elevation profile 
accordingly, yielding a level elevation profile centered 
around zero elevation. Based on the minimum and 
maximum elevation in this compensated profile, the most 
favorable levels of a positive and a negative threshold is 
computed (difference between the two levels is the body 
clearance minus a margin). The compensated elevation 
profile is then tested for exceeding the elevation band 
defined by the two threshold levels and this output is 
filtered spatially as for the step and ditch metrics.  Since this 
metric is more computationally expensive than the other 
two, it is processed last (and only if the other two do not 
fire). 
  

Front 
View

Side 
View

Figure 5. Physical metrics and their corresponding hazards 
 
As an example, Figure 6 shows the interpretation of a 
typical scene.  The elevation profile is inclined to the left, 
relatively flat, and shows a small mound at y=-1m.  The two 
dashed lines indicate the step and ditch thresholds. For 
y>0.5 the step metric has detected a hazard (denoted by 
“o”s). No belly hazard is detected. 
 

Figure 6. Hazard detection. The elevation 
profile is seen in the direction of travel from the vehicle. 

The laser is positioned at y=0, z=1. 

4.4 Performance 

We have implemented the integrity checks and hazard 
detection metrics described above, and are currently 
running experiments to characterize their performance.  
Preliminary indications are that laser proximity 
safeguarding will be a very valuable supplement to the 
overall navigation system.  In terms of missed hazards, the 
performance is excellent. Some false detections are 
encountered, mainly due to specular reflecting surfaces and 
small angles of incidence. This is, however, very dependent 



on the scene used for testing and the pose of the laser 
scanner. Some of these problems can thus be overcome by 
placing the sensor in a more favorable location. 
 
The cycle time is currently about 4 Hz on a 66Mhz 486 in 
the test configuration. This includes no effort for optimizing 
the algorithms, relatively dense sampling, and a high range 
precision, which requires more time by the laser (currently 
15% of the total time). It is expected that the speed can be 
increased considerably without significant loss of detection 
reliability by streamlining code and reducing range 
precision to more realistic values. 
 
An obvious extension would be to incorporate information 
about vehicle movements and the planned path. This would 
enable the metrics to evaluate each point on the elevation 
profile in accordance with the specific parts of the rover that 
will be passing that point. However, the add-on should be 
kept apart from the base-line system so that there always is 
a working backup if the required information from the rover 
should become unavailable. 

5. Conclusions 

This paper has presented an integrated approach to 
safeguarded navigation for lunar rovers.  The key idea is to 
combine multiple techniques, using different sensing 
modalities, to increase the reliability of the overall system.  
In particular, we presented two complementary techniques: 
stereo-based vision for obstacle avoidance and laser-based 
hazard detection. 
 
The stereo-based approach allows the rover to actively 
change its steering angle to avoid obstacles in the mid-range 
(3-7 meters in front of the rover), but it is rather slow, and 
can miss certain types of hazards, such as depressions.  The 
laser-based subsystem is much simpler and faster, analyzing 
high-resolution data immediately in front of the rover (100-
150 cms), but can only command the robot to stop. 
 
We anticipate that the combination of these two techniques 
should give very good performance over wide range of 
terrain. Having tested the stereo and obstacle avoidance 
planner extensively (in one experiment autonomously 
traversing 10 kilometers of natural terrain), we know the 
types of terrain where its performance is weak, and have 
designed the laser proximity system specifically to address 
those weaknesses. 
 
We are currently working to integrate the laser-based 
hazard detection component into our complete navigation 
system, and to fine tune the various metrics. The next step 
is to demonstrate that the integrated system will enable the 
rover to navigate extremely reliably in rougher and more 
varied terrain. 
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