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ABSTRACT 

The metalog probability distributions can represent virtually any continuous shape with a single family 
of equations, making them far more flexible for representing data than the Pearson and other 
distributions.  Moreover, the metalogs are easy to parameterize with data without non-linear parameter 
estimation, have simple closed-form equations, and offer a choice of boundedness. Their closed-form 
quantile functions (F-1) enable fast and convenient simulation. The previously unsolved problem of a 
closed-form analytical expression for the sum of lognormals is one application. Uses include 
simulating total impact of an uncertain number N of risk events (each with iid [independent, 
identically distributed] individual lognormal impact), noise in wireless communications networks and 
many others. Beyond sums of lognormals, the approach may be directly applied to represent and 
subsequently simulate sums of iid variables from virtually any continuous distribution, and, more 
broadly, to products, extreme values, or other many-to-one change of iid or correlated variables. 

1 INTRODUCTION 

1.1 The Problem and Contribution 

The sum of lognormally distributed random variables occurs naturally in nearly every quantitative 
field. But “one of the most surprising facts of elementary probability theory: almost nothing is known 
about the sum of lognormals” (Dufresne 2008). There is no known closed-form expression for the 
sum-of-lognormals probability functions, and the efficient and accurate calculation via simple numeral 
or simulation methods remains elusive despite an extensive history of research in the area.  
 We introduce a new algorithm for obtaining a simple closed-form representation for the 
distribution of a sum of lognormally distributed random variables. Our algorithm is more accurate than 
existing efficiently-computed methods when summing between 2 and 100 iid (independent, identically 
distributed) random variables, each having a σ (the standard deviation of ln 𝑥) ranging from 0.04 to 
1.5. Our algorithm is especially notable for its simplicity and ease of implementation, speed and 
accuracy. We obtain the algorithm by representing the sum of lognormals with a metalog distribution. 
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1.2 Metalog Distributions 

Since the metalogs can approximate the shape of nearly any distribution (Keelin 2016) and are easy to 
parameterize, they are a natural choice for representing a sum-of-lognormal distribution, which 
otherwise has no closed form expression. Figure 1 shows a range of metalog representations of 
lognormal distributions that are virtually indistinguishable from the lognormals themselves. 

 
Figure 1: Exact lognormals vs. corresponding metalog distributions. 

 Metalogs are quantile-parameterized (Keelin and Powley 2010), with coefficients that can be 
determined by an ordinary least squares fit to CDF data, thus averting non-linear parameter-estimation 
procedures. For the lognormal distributions in Figure 1, we used nine points from the CDF to 
parameterize a nine-term semi-bounded metalog distribution. For sums of lognormal distributions, as 
discussed below, such CDF data may be predetermined by simulation.  
 Broadly, the metalog distributions offer significant improvements over the Pearson distributions 
(Pearson 1895, 1905, 1915) in terms of shape flexibility, ease of parameter estimation, simple closed-
form quantile function for convenient simulation, simple closed-form PDF, and choice of boundedness 
(Keelin 2016). The sum of lognormals is one application. 

1.3       Other Sum-of-Lognormal Approaches 

The widespread need to sum lognormal distributions and the unsolved nature of this problem are widely 
documented. “The sum of correlated or even independent lognormal random variables, which is of wide 
interest in wireless communications, remains unsolved despite long-standing efforts” (Tellambura 2008). 
Moreover, “in finance, the most popular model of a stock price is the lognormal distribution”; in actuarial 
science (see also Zuanetti and Leite 2006), “individual claims are often well-represented by a lognormal 
distribution; what is the distribution of total claims?”; “The oldest and widest literature on the sum of 
lognormals is in engineering. Amplitudes of signals are modelled as lognormals. In telecommunications, 
engineers talk of the “logarithm of a sum of signals”; “the lognormal distributions has been used in many 
other fields: in economics, finance, reliability, biology, ecology, atmospheric sciences, geology” 
(Dufresne 2008). 
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Figure 2. The sum-of-lognormals expressed as a metalog compared to previous approaches. N is the 
number of iid lognormal random variables each with ln 𝑥 mean of μ and standard deviation σ. 

 There has been a wide range of prior efforts to characterize the sum of lognormals. These include 
using the Gram-Charlier series expansion (overviewed by Johnson et al. 1994); and numerous efforts to 
approximate the sum of lognormals with a lognormal itself (see Fenton 1960; Beaulieu and Xie 2004; Wu 
et al. 2005; Mehta et al. 2007; Szyszkowicz and Yanikomeroglu 2009; and Cobb et al. 2012, among 
others). Since the sum of lognormals is not actually lognormal, the accuracy of any such approximation is 
limited (Beaulieu and Rajwani 2004). In contrast, Beaulieu and Rajwani introduce a simple closed-form 
for the sum-of-lognormals that is “highly accurate” (their words) over a range of parameters commonly 
encountered in wireless communications. While we agree that their approximation is highly accurate, our 
approach is far more accurate. Figure 2 compares the histogram of a 50 million-trial simulation of sum of 
iid lognormals to three approximations: the metalog representation; the Beaulieu and Rajwani (2004) 
approximation; and Szyszkowicz and Yanikomeroglu (2009) lognormal approximation. The lognormal 
parameters used for this comparison are among those cited as relevant to wireless communications and 
used by Beaulieu and Rajwani to show the increased accuracy of their approximation relative to previous 
efforts. The Szyszkowicz approximation to the sum-of-lognormals in Figure 2 is the least accurate, 
followed by the Beaulieu approximation. In contrast, the metalog approximation is so extremely accurate 
that it is virtually indistinguishable from the histogram.  
 The metalog formulation has several additional advantages compared to Beaulieu and Rajwani. First, 
this approach may be applied to virtually any continuous distribution, not just lognormals. In addition, our 
formulation is a continuous function of the sum-of-lognormal parameters 𝜇, 𝜎, and 𝑁, whereas theirs 
works only for discrete values. Our formulation eliminates parameter-estimation by using a simple linear 
relationship between simulated data and coefficients, whereas theirs requires a non-linear optimization to 
find their coefficients. Our formulation has entirely algebraic closed form expressions for CDF and PDF, 
whereas their CDF requires the normal look-up table. Our formulation can be extended to any desired 
degree of accuracy, whereas theirs, while highly accurate over the ranges investigated, is a fixed 
formulation with no clear path for obtaining additional accuracy. Finally, our formulation can be directly 
extended to include certain correlation or other dependence relationships, whereas theirs assumes 
independence and offers no path for considering dependence. 

2 EXPRESSING THE SUM OF LOGNORMALS AS A METALOG 

We use the example of Figure 2 to illustrate how our algorithm expresses the sum of lognormals in 
closed form as a metalog distribution. For the sum-of-lognormals parameters shown in Figure 2, we 
interpolate into a pre-compiled table of highly-accurate sum-of-lognormal quantile data to obtain the 
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nine-points shown in yellow in Figure 3. The y-values for each yellow dot correspond to the 
probability vector 𝒚 = (0.001,0.020,0.100,0.250,0.500,0.750,0.900,0.980,0.999), and the 
interpolated quantile vector is 𝒙𝒔 = (14.5, 20.5, 27.5, 34.8, 45.8, 61.5, 82.2, 126, 151). 
 We then use the points (𝒙𝒔, 𝒚) to parameterize a nine-term semi-bounded metalog distribution (with 
lower bound zero) to obtain the sum-of-lognormals curves shown in Figures 2 and 3. The sum-of-
lognormals quantile function (inverse CDF) 𝑀௦௅ே is given by 

 
                                                  𝑀௦௅ே(𝑦; 𝜇, 𝜎, 𝑁) = 𝑁𝑒𝝁ା𝑴(𝒚) for 0 < 𝑦 < 1                                                        (1) 
 
where 𝑦 is probability and 𝑀(𝑦) is the nine-term unbounded metalog quantile function (Keelin 2016) 
 

𝑀(𝑦) = 𝑎ଵ + 𝑎ଶln ൬
y

1 − 𝑦
൰ + 𝑎ଷ(𝑦 − 0.5) ln ൬

y

1 − 𝑦
൰ +  𝑎ସ(𝑦 − 0.5) + 𝑎ହ(𝑦 − 0.5)ଶ 

                     + 𝑎଺(𝑦 − 0.5)ଶ ln ൬
y

1 − 𝑦
൰ + 𝑎଻(𝑦 − 0.5)ଷ+ 𝑎଼(𝑦 − 0.5)ଷ ln ൬

y

1 − 𝑦
൰ + 𝑎ଽ(𝑦 − 0.5)ସ         (2) 

 
 The quantile function is fully described by the nine numbers 𝒂 = (𝑎ଵ, 𝑎ଶ, 𝑎ଷ, 𝑎ସ, 𝑎ହ, 𝑎଺, 𝑎଻, 𝑎଼, 𝑎ଽ), 
and this vector of numbers is computed from the vector 𝒙 as 

 
 

Figure 3. Sum-of-lognormals CDF and its quantile parameters. 

 
                                               𝒂 = 𝒀ିଵ ln 𝒙    (3) 

 
where, for scaling convenience, we define 𝒙 = 𝒙𝒔/𝑵; 𝒙 is the average-of-lognormal quantiles 
associated with 𝒚;  ln 𝒙 is the vector natural logarithms of each element of 𝒙; and 𝒀ିଵ is a constant 
9x9 matrix shown in Table 1, which is the inverse of the matrix having the following entries applied to 
the above 𝒚 vector 
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Table 1: 𝒀ି𝟏 for 𝒚 = (. 001, .020, .100, .250, .500, .750, .900, .980, .999). 

 
 
Since 𝒀ିଵis constant, an implementation can precompile or even hard code 𝒀ିଵ. While one could well 
use other choices for 𝒚 (and by implication 𝒀ି𝟏), these 𝒚 values provide a reasonable spread of points on 
the distribution. We do not consider other choices for 𝒚 in this paper. In the example of Figure 3, the 
coefficients are 𝒂 = (3.82, 0.109, 0.484, 0.620, −1.82, 0.282, −0.601, −1.27, 3.20). Since the sum-of-
lognormals quantile function 𝑀௦௅ே has the same number of metalog terms as the number of data that 
parameterize it (nine in this case), the quantile function 𝑀௦௅ே is guaranteed to run through all of its CDF 
parameters (𝒙, 𝒚) exactly. 

 By differentiating the quantile function 𝑀௦௅ே with respect to 𝑦, one obtains ௗ௫

ௗ௬
. The reciprocal of 

this quantity is the sum-of-lognormals density function 𝑚௦௅ே = ௗ௬

ௗ௫
 . 

 

𝑚௦௅ே(𝑦) =
ଵ

ே
𝑚(𝑦)𝑒ିఓିெ(௬)                for 0 < 𝑦 < 1,    

                                            (5) 
                     = 0                                           for 𝑦 = 0,             

 
where 𝑦 is probability, 𝑀(𝑦) is (2), and 𝑚(𝑦) is the unbounded metalog density function (Keelin 2016). 
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 The density function 𝑚௦௅ே is illustrated in Figure 2. To be a valid probability distribution, it must 
be the case that 𝑚(𝑦) > 0 for all 𝑦 ∈ (0,1). While this condition is satisfied in Figure 2, there is no 
guarantee that it will be for an arbitrary 𝒂-coefficient vector. When this condition is violated, we say 
that the 𝒂 coefficients are infeasible. 
 Akin to Taylor series, metalogs with more terms provide more shape flexibility. We could have 
chosen other numbers of terms (e.g. 7, 10, 15) and achieved broadly similar results. We chose nine 
terms in this case because this number provides sufficient shape flexibility to capture sum-of-
lognormals shape nuances without the unnecessary overhead of longer equations. We note that a nine-
term semi-bounded metalog has eight shape parameters. By way of comparison, the beta distribution, 
widely regarded as among the most flexible of the Pearson distributions, has only two shape 
parameters.  

3 GENERALIZATION TO A RANGE OF LOGNORMAL PARAMETERS 

Applying the method of Section 2 to other values of sum-of-lognormal parameters 𝜎 and 𝑁 yields 
equally satisfactory results. Figure 4 shows several more examples where the metalog-based sum-of-
lognormal PDFs are visually indistinguishable from their respective 50-million-simulation histograms. 
 Note that sum-of-lognormals parameter 𝜇 does not affect shape but only scale of the x-axis. Since 
its effect is already accounted for in equations (1) and (5), there is no need to run various cases for 𝜇. 
All that remains then to provide a general closed-form solution for the sum of lognormals is to specify 
𝒙 = 𝒙(𝜎, 𝑁) in closed form as a function of 𝜎 and 𝑁.  
 We begin by pre-calculating the vector 𝒙(𝜎, 𝑁) for a range of discrete values of 𝜎 and 𝑁 to within 
10ିସ of the true value for all entries. We devoted a lot of computation time to obtaining accurate 
entries for this table, available online (Analytica 2019; Keelin 2019) with a subset σ rows shown in 
Table 2 for illustration. An implementation of our algorithm does not need to repeat this work, but can 
simply import our pre-computed tables. The 𝒙-vector of quantiles in each cell of this table was 
computed using a fast Fourier transform of 2ଵସ points of the probability density graph of one log 
normal, raising each frequency component to the Nth power, and this using the fast inverse Fourier 
transform to obtain the PDF graph for the sum of lognormal distribution. This was then integrated to 
obtain the quantiles shown in this table. We also computed every cell using Monte Carlo simulation 
with 50 million trials as a potential approach and to validate the numbers, but settled on the Fourier 
approach since it seemed to be about 100 times more accurate with much less computation time.  
 What about values of 𝜎 and/or 𝑁 that do not appear in the table but that are “in-between” values 
that do appear? One could of course set up and run a new Fourier transform analysis or Monte Carlo 
simulation for such values and apply the method of Section 2. However, these take considerable time, 
memory and effort. We would prefer an instant, closed-form expression for 𝒙(𝜎, 𝑁) that works for 
both values that appear in the table and for those in between. If the values of 𝜎 and 𝑁, respectively, 
that do appear are sufficiently “close to each other,” a simple approach, which we will follow, is to use 
an interpolated 𝒙 for the “in between” values. This approach however brings two new complexities 
into play. How can we ensure a priori that an interpolated 𝒙 is feasible? How accurate is the 
interpolation relative to a new simulation? We address these questions in the subsequent sections. 

4 FEASIBILITY OF INTERPOLATED QUANTILE PARAMETERS 

As detailed in Keelin (2016), metalog distributions are subject to a feasibility condition which an 
arbitrary set of parameters (𝒙, 𝒚) may or may not satisfy: PDF 𝑚(𝑦) > 0 for all 𝑦 ∈ (0,1). Generally, 
this condition must be checked for any given (𝒙, 𝒚) rather than assumed to be true. Taking vector 𝒚 =
(0.001,0.020,0.100,0.250,0.500,0.750,0.900,0.980,0.999) as fixed as discussed in Section 2, we 
have determined that all 𝒙’s in our online table (Analytica 2019; Keelin 2019) are feasible. However, 
we cannot ensure the feasibility of interpolated quantile vectors without additional machinery. Since 
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this additional machinery applies to all distributions in the metalog family, not just to those we are 
using for the sum of lognormals, we provide it as Appendix 1. 
 Summarizing Appendix 1 as it relates to the sum of lognormals, we first prove that for any given 
𝒚, the set of feasible 𝒙’s is convex for unbounded metalog distributions. This implies that a linear 
interpolation among feasible 𝒙′s is feasible. For the semibounded metalogs we use for the sum of 
lognormals, 𝑧(𝑥) = ln (𝑥) is unbounded-metalog distributed (Keelin 2016). Thus, a linear 
interpolation among feasible ln(𝒙)’s is feasible, and a particular form of the interpolation equation that 
guarantees feasibility is implied. 

 

 

 

Figure 4: Metalog-based sum-of-lognormal PDFs vs. 50-million simulation histograms. 

 For “in between” values of 𝜎 and 𝑁, we calculate an interpolated 𝒙 that is guaranteed to be 
feasible as follows. Let 𝑖 and 𝑗 denote a row and column of our online table such that 𝜎௜ିଵ ≤ 𝜎 ≤ 𝜎௜ 
and 𝑁௝ିଵ ≤ 𝑁 ≤ 𝑁௝. Then, with interpolation weights 𝑤ఙ = (𝜎 − 𝜎௜ିଵ)/(𝜎௜ − 𝜎௜ିଵ) and 𝑤ே = (𝑁 −
𝑁௝ିଵ)/(𝑁௝ − 𝑁௝ିଵ), the guaranteed-feasible interpolated 𝒙 is a weighted product of feasible quantile 
vectors  

                                          𝒙 = 𝒙𝒊ି𝟏,𝒋ି𝟏
(𝟏ି𝒘𝝈)(𝟏ି𝒘𝑵)

𝒙𝒊ି𝟏,𝒋
(𝟏ି𝒘𝝈)𝒘𝑵𝒙𝒊,𝒋ି𝟏

𝒘𝝈(𝟏ି𝒘𝑵)
𝒙𝒊,𝒋

𝒘𝝈𝒘𝑵                                                       (𝟔)  
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where the 𝒙𝒊,𝒋 denotes the nine-number quantile vector in row 𝑖, column 𝑗. With feasibility guaranteed, 
we now summarize the above algorithm and then discuss the accuracy of such interpolations. 

 

 

Table 2: Quantile parameters 𝒙 for a range of 𝜎 and  (𝜇 = 0). The full table (Analytica 2019; Keelin 
2019) contains 16 σ spaced geometrically from 0.04 to 1.5 (i.e.,  σ=0.04, 0.07, 0.11, 0.16, 0.215, 0.27, 
0.34, 0.42, 0.52, 0.62, 0.74, 0.88, 1.04, 1.22, 1.44 and 1.5).     

 
 

5 ALGORITHM SUMMARY 

Pulling this all together, our algorithm for obtaining a closed-form metalog representation that 
approximates a sum-of-lognormal distribution is as follows. 

 
Given:  
 

 N = The number of independent iid lognormal random variables to sum. An integer. 
 σ = The standard deviation of ln 𝑥௜  for each iid lognormal component. A positive scalar. 
 µ = The mean of ln 𝑥௜ for each iid lognormal component. A positive scalar. 
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Output: (The parameters for final representation) 
 

 𝒂 =  (𝑎ଵ, 𝑎ଶ, 𝑎ଷ, 𝑎ସ, 𝑎ହ, 𝑎଺, 𝑎଻, 𝑎଼, 𝑎ଽ) = a vector of metalog coefficients 
 

Steps: 
 

1. Use (N, σ) to lookup the 9-number x vector in our online table (Analytica 2019; Keelin 2019).  
When your N or σ lands between entries listed, interpolate using Equation (6).   

2. Compute the metalog coefficient vector 𝒂 using Equation (3) where 𝒀ିଵ is the matrix in Table 1.  
3. Use a in Equations (1) and (5) to determine any point on the quantile or probability density 

curves for this sum of lognormal distribution. 

6 ACCURACY OF INTERPOLATED METALOGS  

Following (Keelin 2016), we characterize the overall accuracy of our algorithm by the Kolmorogov-
Smirnoff (K-S) deviation between the interpolated metalog and the true distribution (maximum 
difference in CDF across all x values). We measured this accuracy by computing an estimate of the 
true CDF to very high accuracy, using the same computationally intensive Fourier transform technique 
used to compute the quantile tables, then comparing the x-values at 1000 equally spaced quantiles to 
the cumulative probability of the interpolated metalog at these 1000 points. We tested at 10,889 
combinations of N and 𝜎, at every N from 2 to 100 and 110 different values of 𝜎, including the 
midpoints of the σ values used in the quantile table. The maximum K-S deviation measured across all 
N and 𝜎 was 0.0098, which occurred at 𝑁 = 100, 𝜎 = 0.46. The average K-S over the 10,890 CDFs 
measured was 0.0038.  
 The algorithm’s limitations in accuracy (although impressively low) stem from three sources: 
 

 Representation error: How accurately does the metalog approximate a sum-of-lognormal 
distribution given exact values for the 9 quantiles? 

 Interpolation error: How accurate are the interpolated quantiles? 
 Precompiled quantile table errors: How accurate are the pre-computed values in our online 

table? 
 

 To study how each of these contribute the overall accuracy, we examine each in turn.  
 To measure how accurately the 9-term metalog fits the shapes of sum-of-lognormals over our 
target range of 2 ≤ 𝑁 ≤ 100 and 0.04 ≤ 𝜎 ≤ 1.5, we examined the K-S deviation for each 
combination of N and σ in our online table, since these are the test cases that involve no interpolation. 
The worst-case deviation (at 𝜎 = 1.3, 𝑁 = 2) was 0.0014, with an average deviation over all cells of 
0.00035. This confirms that the representation error due to our choice of a 9-term metalog is 
impressively low, accounting for about one-tenth the overall K-S deviation. We note that had this been 
a dominant source of error, it could be reduced by increasing the number of terms of the metalog. 
 The next source of error comes from interpolation error – how closely do the interpolated 
quantiles match the true quantiles at the “in between” values of 𝜎 and 𝑁. Since the K-S deviation of 
representation error is roughly one-tenth of the overall K-S deviation, it is reasonable to attribute 90% 
to interpolation error. Since this originates from inaccuracies in the nine interpolated quantiles, we 
measured the accuracy of this interpolation. The interpolation would be exact if the quantiles values 
were a geometric function of 𝑁 and 𝜎 combinations. From our highly accurate Fourier calculations, 
we extracted the 9 quantile levels, 𝒙௧௥௨௘, at each of the 10,890 interpolated (𝑁, 𝜎) combinations. Then 
from the interpolated quantiles, 𝒙𝒊𝒏𝒕𝒆𝒓𝒑, we computed the interpolation accuracy element-by-element 
as one minus the relative error 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 1 −
𝐴𝑏𝑠൫𝑥௜௡௧௘௥௣ − 𝑥௧௥௨௘൯

𝑥௧௥௨௘
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 The minimum accuracy was 98.2%, average accuracy was 99.87%. The interpolation accuracy 
can, of course, be increased by increasing the resolution of the pre-calculated table. 
 Even though we tested at a very large number of  (𝑁, 𝜎) combinations, we note that testing at only 
a finite number of interpolated points does not cover all possible cases. In principle, there could be 
less-accurate cases that wouldn’t show up unless they were tested. Nevertheless, given the practical 
limitations, we believe this a is very reasonable estimate of interpolation accuracy. 
 To estimate the accuracy of our precompiled table quantiles, we repeated the Fourier transform 
calculations using both 2ଵଷ and 2ଵସ points in each graph (with the same number of points in the 
frequency spectrum) and used the difference in the 9 computed quantiles to estimate the accuracy. We 
repeated this for each of the cells appearing in Table 2. We believe this to be a credible measure of the 
accuracy of the 2ଵଷ-point Fourier technique, but since our estimates were all computed with a 2ଵସ-
point Fourier, our estimate should be on the conservative side. We found that in all cases, the absolute 
error came out to be less than 10ିସ (one digit more than printed in our online table) and better than 6 
significant digits in over 98% of the cells. So this accounts for between 0.1% and 0.001% of the 
overall divergence. 

7 CONCLUSIONS  

We have presented an extremely accurate method for summing iid lognormal distributions. Their 
CDF’s and PDF’s, as shown in Figure 5 for a given 𝜇 and 𝜎 and a range of 𝑁, can be instantly 
calculated in closed form without simulation. We have made available a library with functions that 
implement the algorithm, the pre-computed quantile tables, and other supporting materials (Analytica 
2019; Keelin 2019).  
 We are optimistic that our metalog-based approach should be applicable to other problems where a 
hard-to-characterize distribution results from a transformation on a continuous base distribution. 
Beyond sums of lognormals, the approach may be directly applied to represent and subsequently 
simulate sums of iid variables from virtually any continuous distribution, and, more broadly, to 
products, extreme values, or other many-to-one change of iid or correlated variables. Potential 
applications must have a small number of input parameters (we had just 2, N and σ) so that tables can 
be reasonably pre-compiled. To be within the metalog’s scope, the metalog approximation at each 
target cell must be feasible.  

  
 

Figure 5: Average of 𝑁 Lognormals for a Range of 𝑁 (𝜇 = 0, 𝜎 = 1.256). 
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A APPENDIX I. PROOF THAT THE SET OF FEASIBLE METALOG QUANTILE 
PARAMETERS IS CONVEX 

First, we prove the convexity of feasible parameters of the unbounded metalog distribution and thus that 
linearly interpolated quantile vectors are feasible. Then we show the implications of this theorem for 
feasible interpolation methods for semi-bounded and bounded metalog distributions. 
 

Theorem 1 Convexity of feasible parameters of unbounded metalog distributions. Let 𝑀௡(𝑦; 𝒙, 𝒚) be a n-
term metalog distribution with quantile parameters (𝒙, 𝒚), where 𝒙 = (𝑥ଵ, … , 𝑥௡) and 𝒚 = (𝑦ଵ, … , 𝑦௡). 
For any given 𝒚, the set of feasible 𝒙 is convex. 

 

Proof of Theorem 1 The metalog distribution 𝑀௡(𝑦; 𝒙, 𝒚) is a quantile-parameterized distribution (QPD) 
as defined Keelin and Powley (2011). Keelin and Powley (in a proof due to Brad Powley) proved that, for 
any QPD, the set of feasible 𝒂 coefficients is convex. For any given 𝒚, 𝒙 is a linear transformation of 𝒂, 
𝒙 = 𝒀a, where 𝒀 is Equation (4) (Keelin 2016). Convexity is preserved under a linear transformation.  □ 

 
 The importance of Theorem 1 is that if quantile vectors  𝒙𝟏 and  𝒙𝟐 are feasible, then any convex 
combination of them (such as 𝒙ଷ = 𝒙ଵ + (1 −)𝒙ଶwhere 0 ≤ ≤ 1 is feasible. No further feasibility 
check is required. This result also implies that feasible parameters of metalog-distributed transforms may 
be interpolated to yield other feasible parameters of that transform. 
 

Corollary 1 Feasible interpolation of parameters of metalog transforms. Let 𝑧(𝑥) be metalog distributed, 
where 𝑧 is strictly increasing and invertible. If  𝒙𝟏 and  𝒙𝟐 are feasible parameterizations of the 𝑧-metalog, 
then for any 0 ≤ 𝛼 ≤ 1, 𝒙ଷ is feasible, where 

 

𝒙ଷ = 𝑧ିଵ[𝛼𝑧( 𝒙𝟏) + (1 − 𝛼)𝑧( 𝒙𝟐)]                                                             

 

Proof of Corollary 1 Since 𝑧 is invertible, the above equation can be rewritten, 𝑧(𝒙ଷ) = 𝛼𝑧( 𝒙𝟏) +
(1 − 𝛼)𝑧( 𝒙𝟐). Since 𝑧( 𝒙𝟏) and 𝑧( 𝒙𝟐) are feasible, 𝑧( 𝒙𝟑) is feasible by Theorem 1 and thus  𝒙𝟑 is 
feasible.  □


 The 𝑧 functions for bounded and semi-bounded metalog are shown in Table 3, where 𝑏௟  and 𝑏௨ are 
upper and lower bounds. 

Table 3: Transformation functions for interpolated quantile vectors. 

 
distribution: semi-bounded-

lower metalog 
semi-bounded-
upper metalog 

bounded metalog 

𝑧: ln (𝑥 − b௟) −ln (b௨ − 𝑥) ln ൬
𝑥 − b௟

b௨ − 𝑥
൰ 
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