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Abstract

A distinction is drawn between open-loop and

closed-loop plans, where the latter explicitly spec-

i�es how run-time feedback is to be acquired and

used. It is argued that some planning problems,

especially those involving deliberation about in-

formation gathering activities, require planners to

generate closed-loop plans. Partially Observable

Markovian Decision Processes (POMDPs) are pro-

posed as a general representation for physical and

perceptual actions with uncertainty. This paper

reports progress in using POMDPs in planning for

situated, autonomous, closed-loop execution.

Closed-Loop Planning

After a planner derives a course of action for a situ-

ated agent, additional feedback from the environment

typically becomes available to the agent during the ex-

ecution of the plan. This feedback can, and in almost

every situated system does, inuence the intended fu-

ture course of execution. However, the knowledge that

feedback will be forthcomingmay or may not be utilized

by the planner at planning time. Planning systems that

do not take advantage of this knowledge simply produce

open-loop plans, where the expectation or probability is

high that the plan will succeed if executed blindly (i.e.,

without sensing). The fact that the plan is not executed

blindly is ignored at planning time and simply means

that the execution will be somewhat more reliable than

the planner might have predicted. The vast majority

of existing planning systems produce open-loop plans

(e.g.,

[

Sacerdoti, 1975

]

,

[

Chapman, 1987

]

,

[

Dean et al.,

1990

]

,

[

Kanazawa and Dean, 1989

]

,

[

Wellman, 1990

]

,

[

Drummond and Bresina, 1990

]

).

Instead of ignoring the fact that additional informa-

tion will become available during execution, this knowl-

edge can be leveraged at planning time to produce

�
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closed-loop plans. Closed-loop plans contain explicit

contingencies, action choices that depend upon infor-

mation obtained during execution, and even sequences

of actions which serve to gather information upon which

to base future decisions. The deliberative control of

sensing, for example, mandates closed-loop planning

when the justi�cation for performing a sensing opera-

tion rests upon the impact the resulting information is

expected to have on the agent's ability to choose appro-

priate actions (

[

Howard, 1966

]

,

[

Hager, 1990

]

,

[

Chris-

man and Simmons, 1991

]

,

[

Ogasawara, 1991

]

,

[

White-

head and Ballard, 1990

]

). There are also many addi-

tional examples of planning problems that require the

consideration of expected feedback at planning time in

order to choose reasonable future courses of action.

Planning for closed-loop execution requires reason-

ing about uncertainty and about what information will

and will not be observed during future execution. It

also involves evaluating costs (of actions and sensing)

and the associated tradeo�s | tradeo�s commonly re-

quiring consideration of very large or in�nite time hori-

zons. These considerations can commonly be repre-

sented as Partially Observable Markovian Decision Pro-

cesses (POMDPs)

[

Koenig, 1991

]

.

The next section begins by examining some plan-

ning problems that require reasoning about closed-loop

plans. The remainder of the paper is devoted a review

of POMDPs, and of approaches and concerns related

to planning for closed-loop execution using POMDPs

as probabilistic models for action.

Planning Examples

There are many instances of planning problems where

�nding even the optimal open-loop plan fails to provide

an adequate solution. To generate adequate solutions

for problems of this type, a planner must consider how

information is to be obtained during execution and how

such information may change future action choices. A

few example problems are described here in order to

demonstrate the importance of accounting for expected

feedback at planning time.

Planned Selective Sensing: For most conven-

tional planners, actions produce physical changes in the



state of the world. However, more generally an agent

may have some amount of explicit control over its per-

ceptual system with the ability to select between sens-

ing operations. Pure sensing operations do not alter

the world state | they only provide information to the

agent about the world state.

The importance of task-directed selective sensing or

the need to selectively focus perceptual attention is far

from controversial (

[

Abramsom, 1991

]

,

[

Chrisman and

Simmons, 1991

]

,

[

Dean et al., 1990

]

,

[

Reece and Shafer,

1991

]

,

[

Simon, 1983

]

,

[

Whitehead and Ballard, 1990

]

),

yet open-loop planning is severely de�cient on this ac-

count because it is never rational to include a pure sens-

ing operation as part of an open-loop plan. Because, by

de�nition, an open-loop plan makes no explicit consid-

eration of run-time feedback, any information obtained

during execution will not inuence the future course of

execution suggested by the plan. Since it is assumed

that any selectable sensing operation comes with at

least some cost, paying for an action that is believed

to have no behavioral inuence constitutes an irrational

choice. The fundamental point is that a pure open-loop

planner cannot rationally plan sensing operations.

In the real-world, open-loop plans do not always per-

form as predicted; therefore, it is necessary to perform

sensing during execution in order to detect failures.

Execution monitoring subsystems are usually included

in systems with open-loop plans (

[

Fikes and Nilsson,

1971

]

,

[

Wilkins, 1985

]

,

[

Doyle et al., 1986

]

). Unlike the

open-loop plan itself, the execution monitor can alter

the course of action as the result of run-time feedback

(either by replanning or repairing), and thus it may be

rational for an execution monitor to perform sensing

operations. However, as the next example shows, the

separation between the gathering of information and

the planning process may be undesirable.

Contingency Costs: The cost of recovering from

failures, where the actual action outcome di�ers from

the anticipated outcome, varies wildly in the real-world

depending upon the nature and context of the fail-

ure. For example, the expected cost of recovering from

someone suddenly appearing on the sidewalk in front

of an agent is considerably less than the expected cost

of recovering from the loss of footing while walking a

tightrope over Niagara Falls. Recovery costs (or more

generally, contingency costs) constitute a very impor-

tant consideration in many problems, but unlike the

preceding two extreme examples, expected recovery

costs are seldom immediately available. To estimate

the cost of a recovery, it is generally necessary to con-

sider how to recover, which is a new planning problem

in and of itself

[

Abramsom, 1991

]

. In short, properly es-

timating recovery costs requires contingency planning.

Open-loop planners do not account for contingency

costs. Maximizing the probability of success can pro-

duce poor and non-intuitive plans when contingency

costs vary greatly. Maximizing expected utility for a

single action sequence is also insu�cient since the se-

quence used for a recovery will di�er from the antici-

pated action sequence. In addition, recovery costs a�ect

choices that occur before unanticipated failures, so this

issue is separated from execution monitoring and must

be address earlier | at planning time.

From the perspective of closed-loop planning, it is

rather unnatural to use terms like \failure" and \recov-

ery" since the planner may anticipate and plan for many

outcomes. It is more natural to view all cases as possi-

ble outcomes where some outcomes are more likely than

others. Although the ability to produce closed-loop

plans is necessary for problems like these, the consid-

eration of contingencies by agents with limited compu-

tational resources (

[

Russell and Wefald, 1991

]

,

[

Simon,

1983

]

) introduces additional tradeo�s (

[

Doyle and Well-

man, 1990

]

) between obtaining accurate cost estimates

versus deferring the planning of unlikely contingencies

(

[

Olawsky and Gini, 1990

]

,

[

Gervasio, 1990

]

).

POMDPs

The theory of Partially Observable Markovian Decision

Processes (POMDPs) provides a very general repre-

sentational model for actions and closed-loop planning.

The most distinct characteristic of POMDP models is

that the representation of perceptual input is clearly

separated from the representation of world state. Ac-

tion models specify not only how the action changes the

world state, but also how the world state and the ac-

tion identity determine what is sensed. This separation

is crucial for reasoning about what information needs

to be sensed and how it can best be gathered.

In a discrete-time, �nite POMDP, the world is at

any given moment in one of a �nite number of states

S = fs

1

; s

2

; :::; s

n

g. At discrete time intervals the

agent chooses actions from a �nite set A. The world

is assumed to evolve stochastically according to the

Markov assumption, modeled by the transition prob-

abilities p

a

ij

= PrfS

t+1

= jjS

t

= i; A

t

= ag. The

agent, however, cannot directly access the true state

of the world, and must obtain all information about

the state through (possibly noisy) observations. Let

�

t

denote the observation at time t. The relation-

ship between the state and observations is modeled by

r

a

jk

= Prf�

t

= kjS

t+1

= j; A

t

= ag. A real-valued ex-

pected reward, g(S

t

;A

t

), is received after each action

and is used to specify desired world states (eg. goals)

as well as action and sensing costs. Planning with a

POMDP involves maximizing some measure of long-

term utility, usually \average expected reward per ac-

tion" or \cumulative discounted reward."

POMDPs have been considered for a wide variety of

applications, including machine maintenance, quality

control, internal auditing, economics, searches, military

encounters, and data communications

[

Monahan, 1982

]

.

My interests are in using POMDPs to model physical

situated action in the context of planning under uncer-

tainty and selective perception. Purely physical actions

can be easily modeled by setting r

a

j0

= 1 and r

a

jk

= 0



for k > 0. Pure sensory operations (even with sensor

noise) can be modeled as actions that do not change

the world state (p

a

ii

= 1), but which do return informa-

tion. And more generally, physical actions with state-

dependent feedback are naturally represented

[

Koenig,

1991

]

. POMDPs naturally support reasoning about op-

timality and about the value of obtaining information

(either perfect or noisy)

[

Howard, 1966

]

.

Drawbacks

There are two major de�ciencies that come along with

POMDP's generality. The �rst is related to the frame

problem and involves a lack of representational con-

ciseness. The second, more serious problem is the

large computational complexities involved in general-

ized closed-loop planning.

In their pure form as stated above, POMDP models

require explicit enumeration of all states and state tran-

sitions. In A.I., where the number of states is typically

astronomically large, this is clearly infeasible. How-

ever, POMDPs are not any di�erent than other proba-

bilistic models in this respect, and statistical indepen-

dence may be leveraged to obtain concise representa-

tions (see

[

Wellman, 1990

]

,

[

Dean and Wellman, 1991

]

)

in the form of Inuence Diagrams (

[

Howard and Math-

eson, 1984

]

,

[

Shachter, 1986

]

). Inuence Diagrams have

already become common place in the A.I. community,

and can usually be considered to be a special case of

POMDPs evaluated over a �nite-time horizon.

Unfortunately, Inuence Diagrams do not help with

the very severe computational complexity associated

with POMDP-based planning. Exact algorithms exist

that compute optimal policies. Most of these are based

on Sondik's seminal work (

[

Smallwood and Sondik,

1973

]

,

[

Sondik, 1978

]

) but also include algorithms for

evaluating inuence diagrams

[

Shachter, 1986

]

; how-

ever, these formulations can all be shown to be at least

P-space hard

1

in general. Approximation techniques

have also been developed

[

Lovejoy, 1991

]

, but these are

still far too computationally complex for the applica-

tions being considered here. This intractability and the

complex intricacies of these algorithms have also im-

peded the widespread application of POMDPs in other

disciplines

[

Lovejoy, 1991

]

.

It is very clear that general purpose, exact techniques

will always be infeasible; furthermore, it is likely that

general purpose approximation techniques will remain

inapplicable to the sorts of very large state spaces in-

volved in planning for situated action. However, I have

considerable hope that reasonable approximation tech-

niques can be obtained for the speci�c types of problems

encountered by situated agents in real-world situations.

These techniques must harness inherent properties of

situated action and sensing, and the regularities of the

1

The P-space hardness result for inuence diagrams fol-

lows directly from the P-space hardness result for POMDPs

given in Theorem 6 in

[

Papadimitriou and Tsitsiklis, 1987

]

.

real-world

2

. I have made some progress toward these

ends and report two reasonable approaches below.

Exploiting Reactive Execution

Reactive systems, where the choice of action is (almost)

a function of current percepts, have achieved consider-

able success in the past few years at controlling situated

robots (e.g.,

[

Brooks, 1991

]

,

[

Connell, 1989

]

). Behaviors

can potentially be generated by a planner (

[

Rosenschein

and Kaelbling, 1986

]

,

[

McDermott, 1990

]

), and these

recent successes suggest that reactivity may be a good

property to exploit in order to obtain computationally

feasible closed-loop planners.

The basic idea is for the planner to consider only re-

active behaviors, eliminating all other options from con-

sideration. In

[

Chrisman and Simmons, 1991

]

we found

that this corresponds to the use of \static sensing poli-

cies," and can result in very substantial computational

advantages. This class of purely reactive or statically

sensed plans can also be viewed as the class of plans

whose execution requires no internal state in a plan

interpretor

[

Gat, 1991

]

. Especially with problems in-

volving incomplete or selective attention, this turns out

to be a critical limitation

[

Chrisman et al., 1991

]

, but

the bene�ts of the general approach are not lost. Tech-

niques such as hierarchical task decomposition

[

Chris-

man and Simmons, 1991

]

can be used to introduce very

small amounts of internal execution state, resulting in

nearly reactive closed-loop plans, which may have con-

siderable potential for e�ective application.

Exploiting Predictability and

Observability

In many cases, an agent's action models may be quite

good, the e�ects of actions predictable and almost de-

terministic, and the observability of the world state

high. During execution, the agent continually applies

Bayesian conditioning to maintain an updated belief

(state mass distribution) about the current state. The

result is that an agent will usually have a very good idea

(with little uncertainty) what the current world state

is. Some very preliminary experiments (using POMDP

models learned autonomously

[

Chrisman, 1992

]

) have

indicated that this may often be more the rule than the

exception for various non-exploration tasks that require

2

The best known such property is that the vast majority

of state variables remain una�ected by any single action ex-

ecution. This is the basis for the frame problem (

[

McCarthy

and Hayes, 1969

]

).

[

Wellman, 1990

]

has shown that the abil-

ity to include only the direct e�ects in the representation of

an action is a result of the conditional independence be-

tween the action and all current and future state variables,

given the direct e�ects of the action. The ability to harness

conditional independence for computational advantage is,

therefore, extremely important. Due to the pervasiveness

of this topic in the literature on Bayesian reasoning, and

because I have nothing new to contribute here, this aspect

is not considered further in this paper.



tracking partially observable aspects of the world. This

property can be harnessed in a straightforward fashion

to obtain an approximate planner.

At any moment in time, the current belief about

the world can be summarized by a vector ~� =

h�

1

; �

2

; :::;�

n

i, such that ~� 2 R

n

is a point in the (n-1)-

dimensional unit simplex. �

i

represents the probability

that the world is in state i. While it is well known that

the optimal utility is a complicated function � : � ! R,

in this case we can approximate the long-term utility of

choosing action a by

V (a; ~�) �

n

X

i=1

�

i

V

i

(a) (1)

where V

i

(a) is a recorded measure of the expected util-

ity if the agent is in state i and executes action a.

V

i

(a) is not the utility that would result in a totally

observed MDP. Instead, V

i

(a) depends upon the typi-

cal uncertainty distributions experienced by the agent,

and therefore depends upon the particular agent, envi-

ronment, current policy, and tasks that the agent per-

forms. The implication is that V

i

(a) must be learned

through experience

[

Chrisman, 1992

]

rather than calcu-

lated. The optimal action is chosen according to

a

�

= argmax

a

V (a; ~�) (2)

Equation (1) becomes increasingly accurate as the en-

tropy in ~� decreases, corresponding to more certainty

about the current world state. It also is reasonable

when the uncertainty is distributed over a set of states,

but where all these states agree on the optimal action.

This latter case is important when addressing the frame

problem and the importance of physically local state in-

formation for a situated agent. Ignorance about what

is in the next room will generally not impact the opti-

mality of the current action.

While (1) and (2) can be used to select physical ac-

tions, they cannot be directly applied to evaluating the

e�ects of gaining information in the future. However,

information gathering actions (such as with selective

sensing) can be accommodated by searching sequences

of immediate sensor feedback, and then using (1) and

(2) to evaluate the utility improvement from the ex-

pected information gain. In general, even for physical

action planning alone, this search improves the accu-

racy of the approximation in (1). Consider the applica-

tion of action a to the situation described by belief ~�. If

� is the set of possible observations, then the resulting

utility can be approximated by

V (a;~�) �

n

X

i=1

�

i

g(s

i

; a)+

X

�2�

Prf�ja;~�gmax

a

0

V (a

0

; T (~�; �; a))

(3)

where  is a discount factor, and T (~�; �; a) =

~�P

a

R

a

(�)=~�P

a

R

a

(�)

~

1 is the projected state mass dis-

tribution the agent will believe if it perceives � after

executing the action a. Using (3), the search can be

expanded to arbitrary depth with increasing accuracy,

but since this must be carried out at every time point,

it is expected that the search will generally stop at a

depth of one or two.

Conclusion

POMDPs provide a powerful representational mecha-

nism for actions and sensory operations. However, in

general they are highly intractable. Generalized solu-

tion techniques, and even generalized approximation

techniques, remain inapplicable to planning for situ-

ated closed-loop execution. I am optimistic that ef-

�cient approximation techniques designed speci�cally

for situated interaction with the real-world, such as for

autonomous agents, can be developed and utilized ef-

fectively. Two approaches were presented that I have

been developing for such application. While these ap-

proaches appear promising, empirical support for their

e�ectiveness remains a topic for future research.
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