
Sensible Planning: Focusing Perceptual Attention

Lonnie Chrisman and Reid Simmons

School of Computer Science

Carnegie Mellon University

chrisman@cs.cmu.edu, simmons@cs.cmu.edu

Abstract

A primary problem facing real-world robots is the ques-

tion of which sensing actions should be performed at

any given time. It is important that an agent be

economical with its allocation of sensing when sens-

ing is expensive or when there are many possible sens-

ing operations available. Sensing is rational when the

expected utility from the information obtained out-

weighs the execution cost of the sensing operation it-

self. This paper outlines an approach to the e�cient

construction of plans containing explicit sensing opera-

tions with the objective of �nding nearly optimal cost

e�ective plans with respect to both action and sens-

ing. The scheduling of sensing operations, in addition

to the usual scheduling of physical actions, potentially

results in an enornous increase in the computational

complexity of planning. Our approach avoids this pit-

fall through strict adherence to a static sensing policy.

The approach, based upon the Markov Decision Process

paradigm, handles a signi�cant amount of uncertainty

in the outcomes of actions.

Selective Attention

One of the most important decisions in the design of

a mobile robot is the choice of which aspects of the

environment should be sensed at any given time. The

most common approach is to always observe all relevant

aspects of the environment. In the classical planning

framework (eg.

[

Sacerdoti, 1975

]

,

[

Fikes and Nilsson,

1971

]

) this takes the form of assuming that a complete

state description is obtained at the onset of planning. In

the reactive paradigm (eg.

[

Brooks, 1986

]

,

[

Kaelbling,

1986

]

) it involves adding additional sensors and pro-

cessors as necessary to continually monitor all relevant

features of the world.

We are interested in building robots that perform

a large number of diverse and complex tasks. As the

robot's tasks become more complex and more numer-

ous, the number of potentially relevant features of the

environment quickly exceeds the sensing and process-

ing resources that are feasible to supply to a robot

[

Simmons, 1990

]

. Thus, it is very important that the

agent intelligently manage the control of its sensors and

actions | in particular it is necessary to directly ad-

dress the issue of what should be perceived at any given

moment. The relevance of most features tends to be

highly task dependent, and thus the choice of which

sensing operations to perform varies considerably from

task to task. For each task, a robot must explicitly

decide which sensing operations to perform.

In some cases where resources disallow the simultane-

ous sensing of two or more aspects of the environment,

selective sensing is absolutely necessary. This can oc-

cur with physical resources, for example when a given

observation requires pointing the sonar in a certain di-

rection, or as the result of computational resources, for

example when the vision processor has available to it

thousands of potential visual routines

[

Ullman, 1984

]

but only a limited number of CPU cycles.

Selectively sensing the environment introduces the

additional complication that at any given time the

agent has only a partial state description. This implies

that the robot must deal with the possibility that some

desired information is simply not known. In addition,

when actions may have uncertain or non-deterministic

outcomes, closed-loop execution can be important and

the selection of a few items to observe can be critical to

the e�cient detection of a failing plan of action.

This paper presents some initial results in a long

term research program aimed at understanding the in-

teractions between sensing and action and at develop-

ing techniques for the e�ective usage and scheduling of

focused perceptual attention. Our initial goals include

the development of a useful normative theory describ-

ing both the utility of sensing versus action and e�cient

methods for �nding optimal plans of action. The cen-

terpiece of our approach is the adherence to a static

sensing policy, that is, the adoption of a single �xed

sensing procedure for the duration of a given task. The

static sensing policy is the fundamental component that

makes planning for selective perception computation-

ally feasible.

We begin by introducing the notion of a sensing pro-

cedure. We use the Robot and Cup domain through-
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Figure 1: Sensing Procedures

out the paper as an example domain to demonstrate

the basic ideas. Next, we present the concept of static

sensing policies and describe planning algorithms that

take advantage of static sensing policies. Finally, we

discuss methods for introducing hierarchical layering of

statically sensed plans.

Sensing Procedures

For a given task, the choice of what to sense can be

viewed as the choice of which distinctions in the world

the agent should perceive. Perceiving more distinctions

usually results in a better basis for choosing appropriate

actions, but also usually results in higher sensing costs.

Distinctions are made by executing a sequence of

sensing operations. Each individual sensing operation

discriminates between possible subsets of world states,

and the choice of which sensing operation to perform

may depend upon results of previous sensing operations

in the sequence.

This process is captured with the introduction of

sensing procedures. The two sensing procedures of Fig-

ure 1 represent miniature programs where execution be-

gins at the root and terminates at a leaf. The path fol-

lowed depends upon the result of the previous sensing

operation. A unique value for the sensing procedure is

assigned to each leaf.

The two fundamental properties of sensing proce-

dures are that the probability of reaching a given leaf

is a function of the current world state, and that the

cost of executing a sensing procedure is a function of

the leaf reached. When sensing procedures are repre-

sented in tree form as in Figure 1, the cost of execution

for a given leaf can be calculated by summing the costs

of each sensing operation on the path from the given

leaf to the root. However, since the sequence of sensing

operations depends on the world state, it is not possible

to know in advance what the actual cost of running the

sensing procedure will be.

When sensing operations are noiseless, such that their

output value is uniquely determined by the world state,

the leaves of the sensing procedure correspond to mu-

Figure 2: The Robot and Cup Domain.

tually exclusive and exhaustive subsets of the possible

world states. Thus, the leaves correspond to the set of

distinctions the sensing procedure is able to make. It is

also possible to handle any time-invariant distribution

of sensor noise by specifying for each leaf l and world

state s

i

the values �

l;i

= PrfSP reaches ljstate = s

i

g.

For simplicity, the discussion in this paper is limited

only to the case of noiseless sensing operations (where

all �

l;i

values are either 0 or 1). However, the approach

and all of the techniques reported in this paper have

been developed to handle general sensor noise.

Example Domain

In this paper we will adopt the Robot and Cup do-

main shown in Figure 2 as a simple working example.

The robot's task is to grasp the cup using its three

actions A1:Upright-Grasp, A2:Spin, and A3:Side-

Grasp. The Upright-Grasp action succeeds 80% of

the time in grasping the cup when the cup is in the

upright state. However, when it fails, it always tips the

cup over. When the cup is tipped forward with the

mouth of the cup facing the robot, the Side-Grasp

action (shown in Figure 2) succeeds 90% of the time

in grasping the cup; however, if it is tipped backward

with the mouth away, the Side-Grasp action is inef-

fective. In this case, it is best to Spin the cup giving

a 50% chance that after the action, the mouth of the

cup will face the robot. The e�ects of all these actions

are summarized in Figure 3 as a Markov Decision Pro-

cess (MDP)

[

Howard, 1960

]

. We label the four possible

states as

s

G

=Cup is Grasped (the goal).

s

U

=Cup is Upright.

s

F

=Cup is Tipped Forward.

s

B

=Cup is Tipped Backward.

Our primary concern is the robot's perceptual ca-

pabilities. The two sensing operations SO

1

and SO

2

are available for execution. Loosely speaking, SO

1

dis-

criminates between upright, tipped over, and grasped

states, and SO

2

senses the orientation of the mouth

of the cup. With this example, we focus primarily on

whether sensing operation SO

2

is worthwhile by com-

paring the utility of the two sensing procedures shown
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Figure 3: Transition Probabilities

in Figure 1.

The basis for determining whether a given sensing op-

eration is worthwhile eventually reduces to the relative

costs of actions and sensing. We will arbitrarily assume

that each of the three physical actions are of unit cost,

Cost(A

i

) = 1, and that perception is slightly more ex-

pensive with Cost(SO

1

) = 2 and Cost(SO

2

) = 5.

While the Robot and Cup domain was chosen for

expository purposes due to its simplicity, the methods

presented in the paper are applicable to any �xed arbi-

trary set of markov actions and sensing procedures.

Static Sensing Policies

The introduction of sensing operations into planning

problems increases the di�culty of the planning task

enormously. Because sensing operations do not actu-

ally change the physical world, the agent cannot rea-

son solely about world states but must instead reason

within the space of possible beliefs about the world.

This move to belief space results in an explosion of

complexity in the planning space (In the most gen-

eral case, belief space consists of all possible state mass

distributions). If a senseless planner reasons within a

space of n possible discrete world states, after sensing

operations are added the corresponding sensible plan-

ner would reason within an n-dimensional continuous

space. This general case has been studied in detail in

the area of Partially Observed Markov Decision Pro-

cesses (POMDPs)

[

Monahan, 1982

]

,

[

Koenig, 1991

]

.

Any e�ective integration of planning and intelligent

sensing will require restricting generality in order to

obtain computational feasibility. To be feasible, the

result should preserve the tractability and scalability

of the basic (senseless) planning process. We feel it is

important for any theory of intelligent sensing to be

cast within a framework that at least roughly preserves

this basic planning complexity.

The adoption of a static sensing policy addresses

these concerns and forms the basis of our approach.

There are several advantages to adopting a static sens-

ing policy, the most important being that it is possible

to perform a decision-theoretic analysis of the utility

of sensing versus action by solving the corresponding

decision process in terms of the basic state space, thus

avoiding the move to belief space. This is possible be-

cause the static sensing costs can be directly folded into

action models, preserving the decision process over the

original state space.

Before elaborating further, consider the basic execu-

tion cycle of an agent. Execution can be viewed as a re-

peating sense{act cycle. At the beginning of each cycle,

the agent selects a sensing procedure to perform. At one

extreme, the agent may choose a null procedure corre-

sponding to no sensing at all (cf.

[

Erdmann and Mason,

1988

]

). At the opposite extreme the agent perceives ev-

ery distinction possible. Between these extremes exists

a continuum of possible sensing procedures with vary-

ing characteristics.

When, for a given task or subtask, an agent always

chooses the same sensing procedure for the sense step

of the sense{act cycle, we say the agent is using a static

sensing policy. Note that the use of a static sensing

policy does not imply that the same sequence of sens-

ing operations is performed at every cycle, since sensing

procedures are highly conditionalized upon the results

of the previous sensing operations. In di�erent world

states the precise sequence of sensing operations will dif-

fer. Another important point is that an agent commits

to a speci�c sensing procedure only for the duration of

a single task. By selecting di�erent sensing procedures,

the agent varies what it perceives for di�erent tasks.

The disadvantage with pure static sensing policies

is simply that the potential sensing behavior is re-

stricted. The limitations are signi�cant in real applica-

tions. There are two primary techniques for overcoming

these limitations while preserving the static structure

and tractability.

The �rst and simplest technique is the use of virtual

sensing operations. A node that predicts the outcome of

a sensing operation without actually performing the op-

eration may be inserted into a sensing procedure. The

sensing e�ciency gained from the use of virtual sensing

operations comes with a tradeo� of robustness. When

physical sensing operations are used, unexpected events

or sensor noise is quickly detected and reacted to on the

following sense{act cycle. These can go unnoticed when

virtual sensing operations are used. For this reason, a

virtual sensing operation is appropriate when it has a

very high probability of correctly predicting the true

sensor value.

Another technique for overcoming the limitations of

static sensing policies is the introduction of hierarchy.

Hierarchy results from substituting complete plans that

encapsulate lower levels in place of the act step of the



sense-act cycle. Each hierarchical level in a plan uses

a static sensing policy, but the policy may change be-

tween levels. Each level treats the nested plans sim-

ply as \mega-actions" which occupy the act step of the

sense{act cycle.

Action Selection

This section considers the problem of �nding an opti-

mal plan given a particular static sensing policy. The

comparison between two competing sensing procedures

is performed by directly comparing the utility of the

two resulting optimal plans. We begin with the case

of a given sensing policy and a given collection of basic

actions, where the objective is to �nd an optimal sta-

tionary action policy. In the following section we will

generalize this process to the hierarchical case where

the set of actions includes mega-actions.

The choice of state and action model representations

have a major e�ect upon possible planning algorithms.

Because one of our goals is to develop a normative the-

ory of sensing and action, we adopt a complete markov

model of the e�ects of actions. This has the advantage

of being at least as general as any action model that

would be of pragmatic interest to A.I. (a good property

for a normative theory); unfortunately, it requires the

state space to be small enough to explicitly enumerate

for the algorithms to be practical.

We begin by incorporating the costs of sensing and

acting into the MDP. The cost of a given transition is

the sum of the sensing cost for the target state and the

action cost. The desirability of a state can be encoded

as a reward, where goals are assigned high positive re-

wards. The net reward of a transition is the di�erence

between the state reward and the total cost. For exam-

ple, using the �rst sensing procedure in Figure 1 for the

Robot and Cup example, we have

r

2

U;F

= Reward(s

F

) � [ACost(A

2

) + SCost

1

(s

F

)]

= 0� [1 + 7] = �8

r

3

F;G

= Reward(s

G

)� [ACost(A

3

) + SCost

1

(s

G

)]

= 10� [1 + 2] = 7

where r

k

i;j

is the net reward of transitioning from s

i

to

s

j

using action A

k

, ACost(A

k

) is the cost of executing

A

k

, and SCost

1

(s

i

) is the cost of sensing using SP

1

from state s

i

.

Next, a utility criterion must be adopted. We use

the average expected net reward per transition over

the entire problem solving episode, commonly referred

to as gain. This can be conceptualized as the av-

erage utility per action if the robot were to repeat-

edly solve the present problem ad in�nitum starting

from the initial state distribution. For the example,

we will assume that the initial state distribution is

hs

U

; s

F

; s

B

; s

G

i = h:6; :2; :2;0i.

To e�ciently solve the present problem we can ap-

ply Howard's policy iteration algorithm

[

Howard, 1960

]

.
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Figure 4: Reactive Plans

Applying the algorithm results in the policy in Fig-

ure 4a, shown in plan form, and a gain of �0:96. This

represents the optimal behavior possible when sensing

procedure 1 is used statically.

Next, apply this same analysis to the second sensing

procedure in Figure 1. The same steps as above are

repeated and new net transition rewards result. How-

ever, one critical di�erence exists | sensing procedure 2

does not discriminate between s

B

and s

F

, and therefore

the resulting network is not a pure MDP, but rather a

MDP with the constraint that the action selected from

s

B

must be the same as the action selected from s

F

. To

solve the MDP with constraints, we use a variation on

Nafeh's algorithm

[

Nafeh, 1976

]

based on a highly di-

rected branch-and-bound technique which guarantees

an optimal non-randomized stationary policy. In the

current example, the resulting policy has a gain of �3.

This corresponds to the optimal reactive behavior based

on static sensing procedure 2 when the robot is not al-

lowed to base its choice of action on the 
ip of a coin.

If we allow the robot to randomly choose its action,

the plan in Figure 4b with gain �0:72 is the optimal

reactive plan. At the random choice in the �gure, action

A

3

is chosen with probability 0:6. For a given coin bias,

the above techniques can be used by introducing a new

action as the weighted sum of the options. Choosing

the optimal bias e�ciently is an open problem.

The example so far has shown that for non-random

action policies, it is better to discriminate between the

two tipped states using SP

1

. If the agent can choose

some of its actions randomly from certain states, then

the utility gained from the extra sensing operation SO

2

does not outweigh its cost and the plan in Figure 4b

is superior. The next section will show that the use of

hierarchy can provide an even further improvement.

Hierarchy

We now consider the introduction of hierarchy in the

form of mega-actions which encapsulate lower hierar-
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chical levels. Basically, a mega-action is any arbitrary

plan complete with sensing, action sequences, iteration,

and conditionals. While the hierarchical planning pro-

cess is beyond the scope of this paper, here we consider

the process of solving for optimal plans given a sens-

ing policy and a set of actions and mega-actions. Cur-

rently, mega-actions can be assumed to be supplied by

the system designer or cached as the result of previous

planning episodes.

Once invoked, a mega-action retains complete control

until it terminates. We select between mega-actions

by assigning their invocation to a particular state in

the same way we assigned basic actions to states in a

stationary policy.

To solve the MDP with equality constraints in the

presence of mega-actions, we modify the basic policy-

iteration process in Nafeh's algorithm. For each instan-

tiation of a mega-action, we introduce new temporary

nodes into the markov process graph corresponding to

virtual world states that occur at the internal nodes

of the mega-action. We then replicate each action in

the mega-action as a transition arc in the graph, and

fold the sensing operations into the transition costs be-

tween the temporary nodes. The result is an enlarged

state graph that can be treated using variants on the

standard methods from Nafeh's algorithm.

We demonstrate the result of this process for the

robot and cup example when the mega-action of Fig-

ure 5 is introduced. In the example, since it is not

possible to occupy state s

U

directly after executing A

3

,

the U branch of SO

1

is irrelevant and has been omitted

from the �gure. When sensing procedure 2 is used, the

algorithm assigns A

1

to s

U

and the mega-action to s

F

and s

B

. The resulting action policy is shown in plan

form in Figure 6 and has a gain of 0:619. This plan can

no longer be viewed as a reactive plan | it is distinctly

procedural. It also has a higher utility than the plan

in Figure 4a and thus leads to the conclusion that it is

best to not discriminate between s

F

and s

B

when using

the mega-action.

Related Work

The explicit consideration of sensing operations and

sensing costs has been rare in A.I. and is usually dom-

inated by the concern of action scheduling. Neverthe-

less, there is other work that is relevant to the current

research. Space permits only a brief mention of the

Start

Done
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SO
1
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AA
1 3

2

G
U T

G TDone

Figure 6: Procedural Plan

most relevant.

Work by

[

Whitehead and Ballard, 1990

]

in the area

of Reinforcement Learning shares many similar aspects

to our own work and considers the problem of learning

perceptually unambiguous mappings from world states

to internal states.

Tan

[

Tan, 1990

]

uses an ID3 style algorithm to induc-

tively learn sensing procedures for selecting an appro-

priate grasping strategy.

Work in execution monitoring has dealt with insert-

ing explicit, selective sensing operations into plans for

the purposes of detecting stray execution paths and to

mark the reinvocation of a planner

[

Doyle et al., 1986

]

,

[

Miller, 1989

]

,

[

Van Baalen, 1984

]

.

[

Brooks, 1982

]

con-

sidered explicit sensing for the purposes of reducing nu-

merical uncertainty.

Dean

[

Dean et al., 1989

]

adopts, like us, a decision-

theoretic approach to planning and control where sens-

ing operations and physical actions are considered at

the same level. Dean's group has concentrated on the

e�cient evaluation of a given plan using the more con-

cise bayesian in
uence-diagram based representations

for states and action.

Koenig

[

Koenig, 1991

]

discusses many of the issues

involved in using MDPs and POMDPs for modelling

and solving planning problems.

An alternative methodology has been advanced re-

cently of deferring planning until the acquisition of

requisite sensory data

[

Hsu, 1990

]

,

[

Gervasio, 1990

]

,

[

Olawsky and Gini, 1990

]

. Some issues relevant to this

comparison are discussed in

[

Olawsky and Gini, 1990

]

.

Discussion

As the number and complexity of tasks that a robot

performs becomes large and the required sensing ca-

pabilities grows, it becomes more and more the case

that a plan without sensing is a senseless plan. Just as

the e�ective selection and scheduling of physical action

constitutes the foremost concern of today's robots, the

e�ective selection and scheduling of sensing operations

will represent a primary concern in the more competent

robots of the future.



We have presented selective sensing as the process of

choosing which discriminations to perceive and weigh-

ing the cost of sensing against the utility of the extra

information obtained. The key to planning for percep-

tion while preserving the basic complexity of the models

of action and world state comes from the adoption of

a static sensing policy. When the static restriction is

too strong, additional 
exibility can be obtained using

techniques such as virtual sensing and hierarchy that

preserve the static structure across any given level.

The current work represents initial results in a long

term research program, and as such, a number of items

are on our agenda for future research. While the gen-

eral markov action models are appropriate for the ini-

tial development of a normative theory, pragmatically

they are quite limiting in domains with many world

states

[

Ginsberg, 1989

]

. Thus, we plan to study other,

more concise action model and state representations.

Also important are hierarchical planning methods and

directed strategies for searching through the space of

possible sensing procedures. We are also interested

the interplay of learning with these methods, especially

with respect to learning action models and caching

mega-actions, and in developing a more precise under-

standing for the role of virtual sensing operations.
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