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Abstract

Action models used in planning systems must

necessarily be abstractions of reality. It is

therefore natural to include estimates of ig-

norance and uncertainty as part of an ac-

tion model. The standard approach of as-

signing a unique probability distribution over

possible outcomes fares poorly in the pres-

ence of abstraction because many unmod-

eled variables are not governed by pure ran-

dom chance. A constructive interpretation of

probability based on abstracted worlds is de-

veloped and suggests modeling constraints on

the outcome distribution of an action rather

than just a single outcome distribution. A

belief function representation of upper and

lower probabilities is adopted, and a closed-

form projection rule is introduced and shown

to be correct.

1 Introduction

Models of actions used in A.I. systems for planning

and reasoning must necessarily be abstractions of re-

ality. The real world is too complex and too intricate

to model perfectly in complete detail. Whenever we

model the e�ects of actions, we are forced to omit de-

tail which could, in some situations, signi�cantly inu-

ence the resulting outcome. It is natural, therefore, to

include estimates of ignorance and uncertainty as part

of an action model. Probabilistic models in various

forms provide tools for expressing this uncertainty.

The most natural form for probabilistic models comes

from the framework of Bayesian probability, where a

conditional probability on outcomes for an action is

speci�ed as P (ojs), where o is the outcome of execut-

ing the action from situation s. A number of exam-

ples of recent A.I. planning research have employed

models of this form (

[

Drummond and Bresina, 1990

]

,

[

Kanazawa and Dean, 1989

]

,

[

Hanks, 1990

]

,

[

Chris-

man and Simmons, 1991

]

,

[

Christiansen and Gold-

berg, 1990

]

). Bayesian models provide a comfort-

able framework because the knowledge used (condi-

tional probabilities) can be placed in correspondence

with the causal structure of the system being modeled,

and the probabilities can be easily interpreted. How-

ever, strict Bayesian models deal poorly with abstrac-

tion. This di�culty can be traced to the fundamen-

tal constructive interpretation of Bayesian probability

[

Shafer, 1981

]

that assumes unmodeled variables can

always be compared to random chance processes. The

next section demonstrates that this is a particularly

bad assumption in a planning context. For example,

unmodeled variables that inuence outcome may de-

pend upon previous actions an agent has taken, not

upon random chance. Comparing action outcome to

a random chance process is deceptive and can lead a

planner to produce plans that work much di�erently

in the real world than predicted. The correct way to

address abstraction-related de�ciencies in a Bayesian

framework is to re�ne models to greater detail, an ap-

proach in direct conict with the ubiquitous and often

desirable demand to use abstract models.

This paper introduces an approach, designed to prop-

erly handle abstraction, for probabilistically modeling

action. Section 3 introduces an alternative construc-

tive interpretation of probability that adopts abstrac-

tion as fundamental. This suggests representing con-

straints on possible probability distributions over mod-

eled variables rather than representing unique prob-

ability distributions. Section 4 introduces a model

for action based on a belief function representation

for lower probability. Finally, since projection is one

of the most important uses of an action model, Sec-

tion 5 presents a closed-form projection rule and two

theorems demonstrating its correctness. The overall

framework is a generalization of Bayesian probabilis-

tic reasoning.



2 Abstraction Problems

Abstraction is the omission of detail. The presence

of abstraction means that there will be some unmod-

eled factors that may inuence the outcome of an ac-

tion. Abstraction can arise in many di�erent forms,

all of which can be problematic to planning with strict

Bayesian models which commit to complete speci�ca-

tion of outcome probability distributions. The prob-

lems arise because many unmodeled variables are not

governed by random chance. This section considers

one speci�c form of abstraction, the omission of state

variables, and presents an example to illustrate the

problems.

I am considering the action of throwing a rock across

a river, with the possible outcomes that the rock lands

on the opposite shore or lands in the water. There

are many factors that determine the outcome, includ-

ing the rock's weight and coe�cient of air friction,

the wind velocity, my adrenaline level, the condition

of my arm (warmed up, stretched out, injured, etc),

my distance to the water's edge, and the quality of

my footing. Many of these can be further re�ned to

greater levels of detail, and many additional factors

exist. Suppose, however, that some of this detail |

for example, the quality of my footing | is omitted

from my model for the throwing action. The Bayesian

approach compensates for this missing information by

adopting a probability distribution over the possible

outcomes, reecting in this case the expected frequen-

cies that the rock will land in the water versus on the

opposite shore. However, this distribution is not deter-

mined by the modeled variables alone. If I am wearing

cleats on a grassy shore, the rock will be reasonably

likely to clear the river, but when wearing at bot-

tom shoes on damp, moss-covered boulders, reaching

the far side may be impossible. By committing to a

single distribution, a Bayesian treatment does not ad-

mit ignorance (i.e., that there is any lack of knowledge

about the actual outcome distribution). After accept-

ing a Bayesian assessment that on any given throw

consistent with the modeled situation, I will have a

15% chance of succeeding, I might happily produce a

plan to repeatedly throw rocks until one lands on the

far side. The model gives no indication that this may

have no hope of ever succeeding. The problem here

is that the quality of my footing is not governed by

a random chance process, and modeling it as such is

entirely misleading.

Unmodeled inuences can be particularly bothersome

for a planner when the agent's own decisions inuence

unmodeled variables. In this case, the outcome distri-

bution really depends upon decisions made in the past,

and di�erent choices at those past decision points can

result in di�erent outcome distributions for the cur-

rent action. My choice this morning to wear at bot-

tom shoes now a�ects the probability of getting a rock

across the river. Just as some state variables will re-

main unmodeled, inuences between actions will also

go unmodeled. As a planner explores alternative pro-

jection paths, the distribution on e�ects of the same

action in what appears to be identical situations (given

the modeled variables) may be di�erent. Pretending to

know the distribution simply leads to the construction

of plans that don't work as expected when actually

executed in the real world.

3 Abstraction-Based Interpretation

The problems with Bayesian action models stem from

implicit assumptions arising from the Bayesian inter-

pretation of probability. Glenn Shafer

[

Shafer, 1981

]

has eloquently argued for a constructive view of prob-

ability. In the constructive view, the meaning of prob-

ability in any given formalism \amounts to comparing

one's evidence to a scale of canonical examples, and

a constructive theory of probability judgement must

supply ... the scale of canonical examples." Ran-

dom chance provides the canonical example for the

Bayesian interpretation. If a variable does behave ac-

cording to random chance, it is said to be aleatory.

But as the previous section demonstrated, when ab-

straction is invoked in planning contexts, many vari-

ables might not be aleatory. In this section a di�er-

ent constructive view of probability is arrived at by

accepting the abstracted grand aleatory world as the

canonical example. Essentially, abstraction is assumed

as a fundamental starting point for the development

of this view, rather than random chance alone as in

the Bayesian case.

Action models or state descriptions include certain

(modeled) variables and necessarily omit others (un-

modeled variables). A Bayesian model assumes that

a �xed, stationary probability distribution exists over

the set of modeled variables. Implicitly, this amounts

to assuming that all unmodeled variables are aleatory,

so that the modeled distribution is obtained from

P (mv) =

P

uv

P (mvjuv)P (uv), where mv are mod-

eled values and uv are unmodeled values. To drop this

assumption and obtain a new constructive interpreta-

tion for probability, assume that there is some (pos-

sibly in�nite) set of unmodeled (non-aleatory) vari-

ables, such that if these were to be concatenated with

our modeled variables, a �xed, stationary distribution

would result. This entire collection of variables de-

scribes a grand aleatory world. Essentially, if we did

have a complete model with no abstraction, then we

would be able to model action outcomes with a prob-

ability distribution. When we consider only the mod-

eled variables, assigning values to some of these vari-

ables does not imply that a unique probability distri-

bution exists over the unassigned modeled variables



because some unmodeled variables are non-aleatory.

By considering all possible assignments to unmodeled

variables, what we do get is a set of constraints de�n-

ing a (possibly in�nite) set of probability distributions

over the unassigned modeled variables. This set of dis-

tributions properly describes the belief a�orded to an

abstract description.

In the example from the previous section, foothold

quality is a non-aleatory unmodeled variable. Even

though it (and other variables) are unmodeled, what

we may know is that even in the best of all situations,

we cannot possibly have more than a 30% probability

of actually getting a rock across the river. As far as we

know, the actual probability might be 30%, but it may

also be 18%, 5% or even 0% (totally impossible). This

can simply be expressed as P (oppositeShore) � 0:3.

The use of constraints on probability distributions,

rather than precisely speci�ed distributions, provides

one method for probabilistically modeling action out-

comes, despite the problems introduced by abstrac-

tion. Because foothold quality cannot be compared to

random chance, it is wrong to assume a single proba-

bility of success in this example. To handle examples

such as this, strict Bayesian modeling would require

the model itself to be re�ned all the way to a grand

aleatory world | a process which could require in�nite

detail and contradicts the necessity (and our desire) to

use abstract models.

Sets of probability functions are commonly referred to

as lower probability distributions and can be traced

back to

[

Good, 1962

]

. They have been studied math-

ematically by many people, but I have not seen

the above constructive interpretation given previously.

Usually, lower probability work assumes that an under-

lying distribution exists; conversely, the above inter-

pretation does not assume a distribution to exist over

the modeled space. Like some mathematical treat-

ments of non-measurable sets,

[

Halpern and Fagin,

1990

]

do not assume that an underlying distribution

exists, but they do not provide the scale of canonical

examples necessary to qualify the formalism as a full

constructive interpretation of probability.

4 Modeling Action

The previous section argued that abstract probabilistic

models should utilize sets of distributions rather than

always committing to exactly speci�ed distributions.

To apply this idea, it necessary to select a mechanism

for representing sets of distributions. Since the num-

ber of such sets is uncountably in�nite, the choice of

representation scheme will necessarily limit the pos-

sible distributions that can be represented.

[

Fagin

and Halpern, 1989

]

,

[

Wasserman, 1990

]

, and

[

Kyburg,

1987

]

have all advanced the use of belief function repre-

sentations for conveniently representing convex

1

lower

probability functions, and

[

Lemmer and Kyburg, 1991

]

proves that most of the important convex sets can

be represented by belief functions. While it is easy

to construct non-convex belief sets, the usefulness for

planning or decision making of mechanisms which are

general enough to represent non-convex sets of proba-

bilities is dubious, so a belief function representation

is adopted here. This framework is most similar to

[

Fagin and Halpern, 1989

]

.

A belief function can be viewed as a type of data struc-

ture, much like a list is a type of data structure. As

such, it is a useful mechanism both for representing

lower probability, as it is used here, and for represent-

ing evidential support, as in the Dempster-Shafer the-

ory

[

Shafer, 1976

]

. However, the semantics of what is

represented di�ers in these two cases and should not

be confused. For example, Dempster's rule of com-

bination gives perfectly reasonable results when it is

used to combine evidence, but it does not make sense

to apply it to a lower probability interpretation such as

the one advanced in this paper. The reader wishing to

understand the di�erence between the representation

of evidence and lower probability should read

[

Halpern

and Fagin, 1990

]

and

[

Shafer, 1976

]

. For the purposes

of the current discussion, the reader should just be

aware that the Dempster-Shafer theory of evidence is

not being utilized here, even though the same syntac-

tic machinery is employed to represent belief in both

cases.

A belief about the state of the world is modeled us-

ing a \marginal" belief function. This belief function

simply speci�es constraints on the possible probabil-

ity distributions, thus characterizing the agent's beliefs

about the state of the world. Let 


pre

delimit a mu-

tually exclusive and exhaustive propositional space of

possible situations before an action's execution, called

a prestate frame of discernment, and let 


post

delimit

a poststate (after the action's execution) frame of dis-

cernment. A prestate belief is represented internally

by the mass-assignment m

pre

: 2




pre

! [0;1] such that

X

B�


pre

m

pre

(B) = 1; m

pre

(;) = 0

Usually only a few sets, called focal elements, will have

non-zero mass-assignments. The mass-assignment

speci�es a set of constraints on the possible proba-

bility distributions describing the current state. For a

set B � 


pre

, m

pre

(B) is the amount of probability

mass that is constrained to the situations in B, but

which may be freely allocated in any way between the

1

A lower probability distribution is convex if any

weighted average of any two consistent probability dis-

tributions is also consistent with the lower probability

distribution.



situations in B. To simplify the notation, we will in-

formally drop the subscripts and write m(B) when it is

clear that the set B refers to a prestate (B=\before").

Belief and plausibility functions are de�ned as

Bel(B) =

X

C�B

m(C) (1)

P ls(B) =

X

C\B 6=;

m(C) (2)

The belief Bel(B) is the total amount of probability

mass that is trapped within B, and the plausibility

Pls(B) is the total amount of probability mass that is

allowed in B. Each of the three functions m, Bel, and

Pls uniquely determine the other two. For example,

Bel(B) = 1�Pls(

�

B) and m can be obtained from Bel

using

[

Shafer, 1976

]

m(B) =

X

C�B

(�1)

jB�Cj

Bel(C) (3)

A probability assignment P : 


pre

! [0;1] is said to

be consistent with Bel when Bel(B) �

P

b2B

P (b) for

all B � 


pre

. The set of all consistent probability

assignments is denoted by P. It is well known

[

Shafer,

1976

]

that Bel(B) and Pls(B) are lower and upper

bounds respectively on the probability of B:

Bel(B) = inf

P2P

X

b2B

P (b)

Pls(B) = sup

P2P

X

b2B

P (b)

The relationship between a belief function and a par-

ticular consistent Bayesian distribution can be given

by specifying how the mass assignment m(B) for each

set B is reallocated amongst the basic elements of B.

This mapping, called an allocation mapping function,

simply demonstrates how a given consistent probabil-

ity distribution satis�es the constraints speci�ed by a

belief function on the possible distributions. The al-

location mapping function is characterized by the fol-

lowing lemma. The proof appears in the Appendix.

Lemma 1 A probability distribution P is consistent

with belief function Bel if and only if there exists an

allocation mapping function f : 2




� 
 ! [0;1] such

that the following conditions hold:

1.

P

B�


f (B; b) = P (b) 8b 2 


2.

P

b2


f (B; b) =

P

b2B

f (B; b) = m(B) 8B � 


3. f (B; b) � 0, for all B � 
, b 2 


4. f (B; b) = 0 if b 62 B

The e�ects of actions are modeled using basic condi-

tional belief functions, Bel

postjb

: 2




post

! [0;1]. To

simplify notation, we write Bel(Ajb) when it is clear

that A refers to a poststate (A=\after"). This is the

belief assigned to the poststate situation A given that

the prestate situation is exactly b, where b 2 


pre

.

Bel(Ajb) is represented internally by m(Ajb) such that

Bel(Ajb) =

X

C�A

m(Cjb) (4)

Belief functions are generalizations of probability dis-

tributions. When only single element sets are as-

signed mass (i.e., m

pre

(B) = 0 when B has more

than one element), then Bel

pre

represents an exact

probability distribution and is called a Bayesian be-

lief function. Bel

postjb

can similarly represent an ex-

act conditional probability distribution. At the other

extreme, when absolutely no information about the

prestate is available, the vacuous belief function, where

m

pre

(


pre

) = 1, can be used to represent a state of

total ignorance. In between, the various assignments

represent constraints on the possible probability dis-

tributions.

An action is modeled by associating one basic

conditional belief function with each B

i

, where

fB

1

;B

2

; :::;B

m

g form a set partition on 


pre

. An ac-

tion model is given as

8b 2 B

1

; Bel

prejb

(�) = Bel

1

(�)

8b 2 B

2

; Bel

prejb

(�) = Bel

2

(�)

.

.

.

8b 2 B

m

; Bel

prejb

(�) = Bel

m

(�)

Each line of the action model represents one context-

dependent outcome, where B

i

is the precondition spec-

ifying the context. A �ner partition granularity corre-

sponds to greater knowledge about which distinctions

inuence the outcome, and �ner distinctions usually

lead to more precise outcome speci�cations. Each be-

lief function, Bel

i

, is represented internally by explic-

itly specifying the corresponding mass assignments.

As with a prestate description, we say a conditional

probability assignment, P (ajb), is consistent with an

action model Bel(Ajb) when Bel(Ajb) �

P

a2A

P (ajb)

for allA � 


post

and b 2 


pre

. The set of all consistent

distributions is denoted by P

postjb

.

As a simple example of modeling rock throwing, take

the possible prestates to be 


pre

= flight; heavyg.

While this leaves out many important state variables,

it also abstracts in another way by representing a

quantitative variable (weight) qualitatively. The pre-

cise weight of the rock is important for determining the

probability of success, but this precision is abstracted

away by adopting only the qualitative distinctions of



light and heavy. If it were the case that of all the

light rocks I typically pick up, the actual weight obeyed

some �xed distribution, then a single probability dis-

tribution would also be su�cient for expressing the

outcome probabilities in the abstracted model. This

is unlikely to be the case, however, because the dis-

tribution of weight depends upon such things as the

choice of decision procedure that I used in selecting

which rock to pick up. Therefore, as was also the case

with omitted variables, a single distribution may not

su�ce for summarizing the outcome distribution of an

action when a quantitative variable is abstracted into a

qualitative one. Therefore, a belief function is used to

express the abstract action model. Take the possible

poststates to be 


post

= foppositeShore; inWaterg.

An action description might look like:

if b 2 flightg: m(foppositeShoregjb) = :15

m(finWatergjb) = :7

m(


post

jb) = :15

if b 2 fheavyg: m(finWatergjb) = :8

m(


post

jb) = :2

The action model speci�es that the probability of get-

ting a light rock to the other side is between 15%

and 30%, while the probability of throwing a heavy

rock that far is less than 20% but may be impossible.

Compare this to a Bayesian model that predicts that

exactly 15% of the heavy rocks will land on the far

side. Not only does the Bayesian model assert more

precision than is actually warranted, it also gives no

indication that the outcome may actually be impossi-

ble | information that could be critical to a planner.

5 Projection

Projection is the process of predicting the e�ects of an

action's execution given an action model and prestate

description. Projection is one of the primary uses for

an action model, and is utilized directly by some plan-

ners (

[

Drummond and Bresina, 1990

]

,

[

Hanks, 1990

]

).

In this section, a closed-form projection operation

for belief function representations is introduced, and

two theorems prove its correctness. The method is a

generalization of Bayesian projection, performed in a

Bayesian framework using Je�rey's rule:

P (a) =

X

b2


pre

P (ajb)P (b) (5)

Given an action model as in the previous section,

Bel(Ajb), and a belief about the prestate, Bel(B),

the projection operation derives a belief function,

Bel(AjBel

pre

), that represents the belief about the

poststate situation resulting from the action's execu-

tion. We will also make use of one additional condi-

tional belief function, Bel(AjB), given by

Bel(AjB) = min

b2B

Bel(Ajb) = min

b2B

X

C�A

m(Cjb)

Bel(AjB) is almost the same as Halpern and Fagin's

conditional belief functions; however, there are sev-

eral subtle, but important di�erences too detailed to

cover here. Bel(AjB) is not considered to be the action

model | it is only a function that is computed from

the given modelm(Ajb). Notice that there are four dif-

ferent belief functions involved here. In each of the four

cases, mass-assignments m(Ajb), m(B), m(AjBel

pre

),

and m(AjB) represent belief functions in memory (see

(3) and (4)).

Lemma 2 If P

postjb

is consistent with Bel

postjb

, then

for all b 2 B

Bel(AjB) � P (Ajb) =

X

a2A

P (ajb)

Proof:

Bel(AjB) = min

b

0

2B

Bel(Ajb

0

) � Bel(Ajb) 8b 2 B

� P (Ajb)

The projection, represented by m

postjBel

pre

: 2




post

!

[0;1], characterizes the belief about the state after the

action is executed and is given by:

m(AjBel

pre

) =

X

B�


pre

m(AjB)m(B) (6)

The corresponding belief function can equivalently be

written as

Bel(AjBel

pre

) =

X

C�A

m(CjBel

pre

)

=

X

B�


pre

Bel(AjB)m(B) (7)

This post-state belief is really a marginal belief func-

tion, but Bel

pre

is included in the notation to avoid

confusion. Note the similarity between (6), (7), and

the Bayesian projection rule (5). Just as the action

model and prestate belief functions can be interpreted

as representing constraints over the possible probabil-

ity distributions, Bel(AjBel

pre

) also represents distri-

bution constraints. We say a projected probability dis-

tribution, P , is consistent with a projected belief func-

tion, Bel(AjBel

pre

) if Bel(AjBel

pre

) �

P

a2A

P (a) for

all A � 


post

. The set of all consistent projected

probability distributions is denoted P

postjBel

pre

. The

following theorem establishes the completeness of the

projection procedure.



Theorem 1 Let P represent a Bayesian projection

obtained by (5) from a Bayesian action model P

postjb

and a Bayesian prestate belief P

pre

, both of which

are consistent with Bel

postjb

and Bel

pre

respectively.

Then P is consistent with the projected belief function

Bel(AjBel

pre

). Formally

�

P : P (a) =

P

b2


pre

P (ajb)P (b);

P

postjb

2 P

postjb

; P

pre

2 P

pre

�

� P

postjBel

pre

Proof: Assume P

pre

and P

postjb

are consistent with

Bel

pre

and Bel

postjb

respectively. Applying Equation

(7) and Lemmas 1(2), 2, 1(4), and 1(1) (in that order)

yields:

Bel(AjBel

pre

) =

X

B�


pre

Bel(AjB)m(B)

=

X

B�


pre

Bel(AjB)

X

b2B

f (B; b)

�

X

B�


pre

X

b2B

P (Ajb)f(B; b)

=

X

B�


pre

X

b2


pre

P (Ajb)f (B; b)

=

X

b2


pre

P (Ajb)P (b) = P (A)

Therefore, by de�nition, P is consistent with

Bel(AjBel

B

).

This theorem veri�es that the projection will not jump

to conclusions that are not justi�ed by the available

information since valid poststate distributions will not

be left out. However, this by itself is not a partic-

ularly strong guarantee. For example, the vacuous

projection which always produces a poststate belief

of total ignorance (i.e., m(


post

jBel

pre

) = 1) also

has this property. It is therefore of interest to ex-

plore whether the converse to Theorem 1 holds, i.e.,

whether P

postjBel

pre

� fP : :::g. This would imply

that Bel(AjBel

pre

) is the true convex projection. Un-

fortunately the converse does not hold. In fact, the

true lower probability projection is not necessarily rep-

resentable by a belief function, even if the prestate and

the action model are represented by belief functions.

This is demonstrated in the following example:

I am considering throwing a rock that is currently in

my hand across the river. If it is a heavy rock, the

odds are better than even that it'll land in the water.

There is also at least a 20% chance that it lands on the

opposite shore, and at least a 10% probability that I'll

drop it without launching it at all. On the other hand,

if it turns out to be light weight, the odds are better

than even that it will land on the opposite shore, with

absolutely no chance of accidentally dropping it and

at least a 10% chance that it lands in the water. I

haven't the slightest idea whether the rock I am about

to throw is light or heavy, but I do know it is one of

the two.

If we set 


pre

= flight; heavyg, 


post

=

finWater; oppositeShore; droppedg, the prestate be-

lief is given by m(


pre

) = 1, and the action is modeled

by:

if b 2 fheavyg: m(finWatergjb) = :5

m(foppositeShoregjb) = :2

m(fdroppedgjb) = :1

m(


post

jb) = :2

if b 2 flightg: m(finWatergjb) = :1

m(foppositeShoregjb) = :5

m(finWater; oppositeShoregjb) = :4

Applying the projection rule yields the following post-

state mass-assignment:

m(finWatergjBel

pre

) = :1

m(foppositeShoregjBel

pre

) = :2

m(finWater; oppositeShoregjBel

pre

) = :4

m(foppositeShore; droppedgjBel

pre

) = :1

m(


post

jBel

pre

) = :2

This assignment coincides with intuition since the re-

sulting Bel and P ls correctly bound the possible prob-

ability distributions. For example, the solution indi-

cates that there is a 10% belief and 70% plausibility

that the rock lands in the water. In a grand aleatory

world for this situation, it may be the case that there is

a 40% probability that the rock is light, a 30% chance

that a light rock lands in the water, and a 60% chance

that a heavy rock lands in the water. Notice that these

are consistent with the problem. If this is the case,

then the actual probability of landing in the water is

48%, which is clearly between the projected bounds of

10% and 70%. However, despite the intuitive appeal,

the probability distribution

P (inWater) = :1

P (dropped) = :3

P (oppositeShore) = :6

is also consistent with the projected belief function,

yet it cannot be generated by any consistent Bayesian

prestate-action model pair. In fact, the true poststate

of this example cannot be exactly represented with a

belief function.

One method for handling the above example exactly

would be to adopt a representation scheme that is even

more general than belief functions | for example, a

scheme capable of representing certain non-convex sets

of distributions. At this point, however, it is unclear

how the additional generality could be of any use in



the context of planning and decision making. There-

fore, we keep the belief function based projection, even

though a small amount of information is lost. Given

that the representation is limited to belief functions,

the following theorem shows that the projection rule

is the best projection operation possible.

Theorem 2 Let A � 


post

be any set in 


post

. There

exists a consistent Bayesian prestate{action model

pair, P

pre

and P

postjb

, such that

P (A) =

X

b2


pre

P

postjb

(Ajb)P

pre

(b) = Bel(AjBel

pre

)

Proof: Introduce the ordering b

1

; b

2

; :::; b

n

for all

b

i

2 


pre

such that Bel(Ajb

1

) � Bel(Ajb

2

) � ::: �

Bel(Ajb

n

). Let B

i

= fb

i+1

; b

i+2

; :::; b

n

g, B

n

= ;. Then

rewriting the sum in (7):

Bel(AjBel

pre

) =

n

X

i=1

X

B�B

i

Bel(Ajfb

i

g [B)m(fb

i

g [B)

=

n

X

i=1

Bel(Ajb

i

)

X

B�B

i

m(fb

i

g [B)

=

n

X

i=1

P (Ajb

i

)P (b

i

) = P (A)

where P (Ajb

i

) was selected as equal to Bel(Ajb

i

), and

P (b

i

) was chosen by reallocating each mass m(B) to

the smallest element b

i

2 B as determined by the in-

troduced ordering.

The theorem implies that if the projected poststate

belief function is tightened in any way, then valid

Bayesian poststate distributions will be left out. The-

orem 1 implies that if it were weakened in any way,

impossible distributions would be let in. Therefore,

the projection rule is the best one can hope for if one

is not willing to use more complex representations. Ge-

ometrically, the projection rule �nds the convex hull

of the possible poststate probability distributions.

6 Levels of Abstraction

It is usually possible to model a system at many di�er-

ent levels of detail. As more detail is left unmodeled,

it is said that the model is at a greater level of abstrac-

tion. Increasing the level of abstraction of an action

model decreases the precision at which predictions into

the future can be made using the model.

The e�ects of abstracting too much can be easily spot-

ted in a lower probability representation where igno-

rance is explicitly represented. For example, if an ab-

stract model omits the most important variables in

a given problem, after projecting through only a few

consecutive actions, the agent may be left with the

vacuous poststate belief (i.e., complete ignorance). In

general, the distance into the future at which an agent

can usefully make predictions (even statistical predic-

tions) is limited by the level of abstraction of its mod-

els.

There is a distinct di�erence between how the lower

probability approach handles the case of overly ab-

stract models from how the Bayesian approach treats

this case. If a Bayesian model is projected into the

future to a point where unmodeled, non-aleatory vari-

ables signi�cantly inuence the �nal poststate, the

Bayesian model still makes a precise statistical claim

about the �nal poststate distribution without any ex-

plicit indication that the stated distribution lacks ac-

curacy. If the actual outcome frequencies are mea-

sured, they are likely to be quite di�erent from the

predicted distribution (one example of this discrep-

ancy actually occurring appears in

[

Christiansen and

Goldberg, 1990

]

). On the other hand, the lower proba-

bility approach gives very loose bounds in this case, ef-

fectively admitting that it doesn't know precisely what

to expect. It is important to realize that the actual ac-

curacy is equivalent in the two cases, being determined

not by the formalism, but by the level of abstraction

in the models. The primary di�erence here between

the formalisms is whether or not the level of precision

is explicitly indicated. This also suggests that the ex-

tra information encoded by a belief function may be

extremely valuable to any system that automatically

adjusts its own level of abstraction during reasoning.

7 Conclusion

Current techniques for using probabilistic models for

planning are weak and applicable only to fairly small

or well behaved problems. Despite the development

of Bayesian networks

[

Pearl, 1988

]

for concisely repre-

senting probability distributions, the ability to attack

probabilistic planning problems with extremely large

state spaces, the type typically of interest to A.I. re-

searchers, will require the ability to properly handle

abstract probabilistic models. The constructive frame-

work presented here addresses these concerns. Con-

ditional independence statements can still be asserted

and used in the lower probability framework, for exam-

ple, to address concerns related to the frame problem

(cf.

[

Wellman, 1990

]

). However, the framework may

also o�er signi�cant advantages for inference networks,

since it may potentially allow \almost statistically in-

dependent" inuences to be abstracted away, a feature

which could be used to greatly reduce the number of

predecessors of a node when it is more important to

obtain a quick answer than it is to obtain a precise

answer. This is one of the many interesting areas for

future research.



One of my own research interests is closed-loop plan-

ning, where the planner considers, at planning time,

whether or not to commit resources to obtain addi-

tional information at execution time

[

Chrisman and

Simmons, 1991

]

. Not observing a state variable turns

out to be a lot like abstracting a model. Since the

unobserved state variable can usually be a�ected by

the agent's own behavior, unobserved variables are not

aleatory. The current framework arose out of an ef-

fort to deal with unobserved variables e�ciently with-

out having to continue reasoning about unobserved de-

tails as the strict Bayesian tools demand. Along with

the projection rule, a closed-form conditioning rule,

a generalization of Bayes' rule, has also been devel-

oped with similar associated theorems, thus allowing

observations to be incorporated into the agent's be-

lief about the state of the world (see also

[

Fagin and

Halpern, 1989

]

,

[

Wasserman, 1990

]

).

The most important area for future research is the

development of e�ective probabilistic planning algo-

rithms that use these abstract action models. Given

the projection rule presented here, it should be fairly

easy to adapt temporal projection algorithms (

[

Drum-

mond and Bresina, 1990

]

,

[

Hanks, 1990

]

) to the new

representations. Additionally, the introduction of the

extra representational power may contribute impor-

tant capabilities that could signi�cantly extend the

state of the art of temporal projection algorithms. For

example, Hank's algorithm bundles outcomes in order

to obtain small projection graphs. The generalized

probability representation may additionally allow ac-

tion choices to be bundled as well. The result would

be a form of least-commitment probabilistic temporal

projection.

Models used by planners will always be abstractions of

reality. Probability provides an important tool for rep-

resenting uncertainty, but because many unmodeled

inuences are not governed by random chance, simply

assuming a unique probability distribution over the

possible action outcomes may work poorly. The new

framework advocates representing constraints on out-

come probability distributions rather than just single

probability distributions. The extra representational

power may be valuable for capturing ill-behaved and

poorly understood actions while avoiding the mislead-

ing appearance of having more knowledge about the

projected e�ects of an action than is actually the case.
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Appendix: Proof of Lemma 1

Proof: First, assume the conditions hold for some f .

Then

Bel(B) =

X

C�B

m(C) =

X

C�B

X

b2C

f (C; b)

=

X

b2B

X

C:b2C;C�B

f(C; b)

�

X

b2B

X

C�


f(C; b) =

X

b2B

P (b)

Therefore, P is consistent with Bel.

For the other direction, assume P is consistent with

Bel. Pick a set B � 
 and an element b 2 B and

change the belief function by transferring mass in the

amount of f (B; b) from B to fbg, where

f (B; b) = minm(B);min

C�


fP (C)�Bel(C) : B 6� C; b 2 Cg

Repeatedly apply the transfer for every pair of B � 


and b 2 B, at each step modifying Bel by the shift in

mass and using the modi�ed belief to evaluate f (B; b)

for successive pairs. Take f (B; b) = 0 for all b 62 B.

Notice from (1) that the only sets C for which the

transfer will alter Bel(C) are the sets where B 6� C

and b 2 C. For these sets, the minimization ensures

that the new Bel(C) continues to be less than or equal

to P (C). Therefore, P will continue to be consistent

with Bel after each mass transfer.

Next, it is shown that all the mass will eventually be

transferred to single element subsets, therefore exactly

specifying the probability distribution P . After all the

mass has been transferred, suppose there is a set with

more than one element where m(B) > 0. Then for

each b 2 B, there is a set C

b

: B 6� C

b

^ b 2 C

b

such

that Bel(C

b

) = P (C

b

). But these sets fC

b

jb 2 Bg to-

tally account for all the mass in

^

C =

S

b2B

C

b

. How-

ever, m(B) also contributes to the belief of

^

C, so that

if m(B) > 0, then the mass in

^

C is overaccounted for,

i.e., Bel(

^

C) > P (

^

C). This contradicts the fact that

P is consistent; therefore, m(B) must be zero for all

B with more than one element. The resulting Bel is

a Bayesian belief function, and the total amount of

mass assigned to m(fbg) is

P

B�


f (B; b), thus prov-

ing condition 1. Since all the mass is transferred out

of B to the elements b 2 B, condition 2 is proved.

The third and fourth conditions follow directly from

the speci�cation of f (B; b) above.


