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Abstract

It is known that Perceptual Aliasing may sig-

ni�cantly diminish the e�ectiveness of reinforce-

ment learning algorithms

[

Whitehead and Ballard,

1991

]

. Perceptual aliasing occurs when multiple

situations that are indistinguishable from imme-

diate perceptual input require di�erent responses

from the system. For example, if a robot can only

see forward, yet the presence of a battery charger

behind it determines whether or not it should

backup, immediate perception alone is insu�cient

for determining the most appropriate action. It is

problematic since reinforcement algorithms typi-

cally learn a control policy from immediate per-

ceptual input to the optimal choice of action.

This paper introduces the predictive distinctions

approach to compensate for perceptual aliasing

caused from incomplete perception of the world.

An additional component, a predictive model, is

utilized to track aspects of the world that may not

be visible at all times. In addition to the control

policy, the model must also be learned, and to al-

low for stochastic actions and noisy perception, a

probabilistic model is learned from experience. In

the process, the system must discover, on its own,

the important distinctions in the world. Exper-

imental results are given for a simple simulated

domain, and additional issues are discussed.

Introduction

Reinforcement learning techniques have recently re-

ceived a lot of interest due to their potential appli-

cation to the problem of learning situated behaviors

for robotic tasks (

[

Sutton, 1990

]

,

[

Lin, 1991

]

,

[

Mahade-

van and Connell, 1991

]

,

[

Mill�an and Torras, 1991

]

,

[

Chapman and Kaelbling, 1991

]

). The objective for

a reinforcement learning agent is to acquire a policy

for choosing actions so as to maximize overall perfor-

mance. After each action, the environment provides

feedback in the form of a scalar reinforcement value,

and the discounted cumulative reinforcement is cus-

tomarily used to assess overall performance.
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Figure 1: Data Flow Through System Components.

The e�ectiveness of reinforcement learning tech-

niques may signi�cantly diminish when there exist per-

tinent aspects of the world state that are not directly

observable. The di�culty arises fromwhat

[

Whitehead

and Ballard, 1991

]

have termed perceptual aliasing, in

which two or more perceptually identical states require

di�erent responses. An agent that learns its behav-

ior as a function from immediate percepts to choice

of action will be susceptible to perceptual aliasing ef-

fects. Nevertheless, common factors such as the pres-

ence of physical obstructions, limited sensing resources,

and restricted �eld of view or resolution of actual sen-

sors make incomplete observability a ubiquitous facet

of robotic systems.

The Lion algorithm

[

Whitehead and Ballard, 1991

]

,

the CS-QL algorithm

[

Tan, 1991

]

, and the INVOKE-N

algorithm

[

Wixson, 1991

]

were previously introduced

to cope with perceptual aliasing. Each of these al-

gorithms compensates for aliasing e�ects by accessing

additional immediate sensory input. This paper intro-

duces a new approach that overcomes limitations of

previous techniques in two important ways. First, as-

sumptions of deterministic actions and noiseless sens-

ing are dropped. And second, the new technique ap-

plies to tasks requiring memory as a result of incom-

plete perception

[

Chrisman et al., 1991

]

. For example,

if a warehouse robot has permanently closed and sealed

a box and the box's contents determines its next ac-

tion, it is necessary to remember the box's contents.

Incomplete perception of this sort cannot be overcome

by obtaining additional immediate perceptual input.

The current predictive distinction approach intro-

duces an additional predictive model into the system

1

,

1

Predictive models have been used in reinforcement

learning systems for various purposes such as experience



as shown in Figure 1. The predictive model tracks the

world state, even though various features might not

be visible at all times. Instead of learning a transfer

function from percepts to evaluation of action, rein-

forcement learning now learns a transfer function from

the internal state of the predictive model to action

evaluation. Deterministic actions and noiseless sens-

ing are not assumed; therefore, the predictive model

is probabilistic

2

. A su�cient predictive model will

usually not be supplied to the system a priori, so

the model must be acquired or improved as part of

the learning process. Learning the model involves not

only estimating transition and observation probabili-

ties, but also discovering what the states of the world

actually are (c.f.,

[

Drescher, 1991

]

). This is because

perceptual discriminations can no longer be assumed

to correspond directly with world states. With a noisy

sensor, it may be possible to observe two or more dif-

ferent percepts from the same state, or perceptual in-

completeness may cause identical percepts to register

from distinct world states.

In our experiments, the agent begins initially with

a small, randomly generated predictive model. The

agent proceeds to execute actions in the world, per-

forming a variation of Q-learning

[

Watkins, 1989

]

for

action selection using the internal state of the pre-

dictive model as if it were perceptual input. After

some experience has been gathered, this experience is

used to improve the current predictive model. Using

maximum likelihood estimation, probabilities are up-

dated. Next, the program attempts to detect distinc-

tions in the world that are missing from its current

model. When the experience gives statistically signi�-

cant evidence in support of a missing discrimination, a

new distinction is introduced by recursively partition-

ing the internal state space of the model and readjust-

ing probabilities. The system then cycles, using the

new improved model to support Q-learning.

The next section introduces the general form of the

predictive model and the Bayesian estimation proce-

dure that uses it to update belief about the state of

the world. The process of reinforcement learning when

the model is provided is then discussed, followed by

the model learning algorithm. Some empirical results

are reviewed, and �nally important issues and future

research topics are listed.

The Predictive Model

A predictive model is a theory that can be used to make

predictions about the e�ects of actions and about what

the agent expects to perceive. In general, it may be

necessary to maintain internal state in order to track

replay (e.g.,

[

Lin, 1991

]

, DYNA

[

Sutton, 1990

]

)

2

It may also be possible to apply recurrent neural net-

works to learn and use a predictive model in a simi-

lar fashion (

[

Jordan and Rumelhart, 1992

]

, [Lin, personal

communication]).

aspects of the world that may occasionally become un-

observable to the agent. For example, to predict what

will be seen after turning around, a predictive model

should remember the contents of that location the last

time it was visible. Interestingly, the ability to predict

is not the characteristic that makes predictive mod-

els useful for overcoming perceptual aliasing. Instead,

it is the internal state that is formed and utilized to

make predictions which is valuable to the reinforce-

ment learner. The central idea behind the current

approach is that the information needed to maximize

predictiveness is usually the same information missing

from perceptually aliased inputs.

Predictions need not be deterministic, and in fact in

this context, deterministic models are inappropriate.

The models here are stochastic. It is assumed that at

any single instant t, the world state s

t

is in exactly one

of a �nite number of classes, class(s

t

) 2 f1;2; :::;ng,

and class identity alone is su�cient to stochastically

determine both perceptual response and action e�ects

(i.e., the Markov assumption). A single class in the

model may correspond to several possible world states.

The agent has available to it a �nite set of actions A.

For each action and pair of classes, a

A

i;j

speci�es the

probability that executing action A from class i will

move the world into class j. The class of the world

state is never directly observable | only probabilis-

tic clues to its identity are available in the form of

percepts. The perceptual model, b

j

(v), speci�es the

probability of observing v when the world state is in

class j. Together, a

A

i;j

and b

j

(v) form the complete

predictive model. For this paper, v is assumed to be

a �nite and nominal (unordered) variable. Predictive

models of this form are commonly referred to as Par-

tially Observable Markov Decision Processes (

[

Lovejoy,

1991

]

,

[

Monahan, 1982

]

).

The actual class of the world at any instant is never

directly observable, and as a result, it is in general not

possible to determine the current class with absolute

certainty. Instead, a belief is maintained in the form

of a probability vector ~�(t) = h�

1

(t); �

2

(t); :::;�

n

(t)i,

where �

i

(t) is the believed probability that class(s

t

) is

i at the current time t. Whenever an action is executed

and a new observation obtained, Bayesian conditioning

is used to update the belief vector as follows

�

j

(t+ 1) = k � b

j

(v)

X

i

a

A

i;j

�

i

(t)

where A is the action executed, v is the sensed percept,

and k is a normalizing constant chosen so that the

components of ~�(t + 1) sum to one.

Reinforcement Learning

Once a predictive model is available to the system, the

task of the reinforcement learner is to learn the value

of each action from each possible belief state. Specif-

ically, the system must learn the function Q(~�;A) :

<

n

� A ! <, which returns the estimated cumulative



discounted rewards (referred to as the Q value) when

given an action A 2 A and a vector of probabilities ~�

specifying the belief about the state of the world. To

learn this function, a variation of the Q-learning algo-

rithm (

[

Watkins, 1989

]

,

[

Barto et al., 1991

]

) is used.

However, the Q-learning algorithm must be modi�ed

in this case because the domain of Q is not discrete

and �nite as the unmodi�ed algorithm requires.

To learn the Q function, a very simple approxima-

tion is used. For each class i in the predictive model

and each action A, a value V [i;A] is learned. Q(~�;A)

is then approximated as

Q(~�;A) �

n

X

i=1

�

i

V [i;A]

This approximation is accurate when the model is

highly predictive of the class distinctions that impact

the optimal control, so that most probability mass is

usually distributed among classes that agree upon the

optimal action. This approximation works well for

many applications requiring memory to address per-

ceptual aliasing, but is inappropriate for choosing be-

tween information gathering actions and active percep-

tion.

Learning Q involves only adjusting the values of V .

This is done using the Q-learning rule, except that

each class is treated as being only fractionally occu-

pied. Each entry is adjusted by that fraction using the

update rule

V [i; A] = (1� ��

i

(t))V [i; A] +

��

i

(t)(r + U (~�(t+ 1)))

U (~�(t + 1)) = max

A

Q(~�(t+ 1);A)

where A is the action taken, r is the reward received,

 is a discount factor, and � is the learning rate. All

V [i;A] for i = 1; :::;n are updated after each action. If

the model identi�es a single class as the only one with

a non-zero probability mass, the update rule reduces

to conventional Q-learning.

With a predictive model in hand and the above

updating rule in place, the overall scenario for this

part of the system is the same as with most reinforce-

ment learning systems. At each cycle, the agent ob-

tains its current state estimate ~�(t) (in this case, from

its predictive model) and executes the action having

the largest Q(~�(t); A). After the action completes,

Bayesian conditioning uses �(t) and the new percep-

tual input v to obtain ~�(t + 1). The updating rule is

applied and the cycle repeats.

Model Learning

Experience obtained by the agent from executing ac-

tions and the resulting perceptual input is used to im-

prove its current predictive model. The task of the

model learning algorithm is to obtain the best pre-

dictive model it can from this experience. This in-

volves two aspects. First, given a set of classes, both

the action transition probabilities a

A

i;j

and the obser-

vation probabilities b

j

(v) must be adjusted in order to

maximize predictiveness. Second, the algorithm must

detect and incorporate any additional distinctions ex-

isting in the world that are not currently accounted

for by the model. Incorporating a new distinction in-

volves enlarging the number of classes recognized by

the model. If no initial predictive model is supplied to

the system, the system begins with a two state model

with randomized probabilities and then uses the algo-

rithm to improve and enlarge it from experience.

Being probabilistic, model learning involves statisti-

cal assessment, making it is necessary to collect a body

of experience before running the model learning algo-

rithm. The agent executes for a prespeci�ed number of

cycles (m), recording each action-observation pair and

continuously performing (modi�ed) Q-learning. The

agent then invokes the model learning algorithm, us-

ing the recorded experience as input, to produce an

improved predictive model. The entire process then

repeats. Since policy and model learning are inter-

leaved, model learning is sensitive to the current con-

trol policy (c.f.,

[

Jordan and Rumelhart, 1992

]

). As

the control policy tends towards optimality, recorded

experience will be primarily composed of states on the

path to goal achievement, leading the model learning

algorithm to learn mostly about situations that impact

goal achievement.

Probability Adjustment

The �rst task in improving the model is adjusting the

probabilities a

A

i;j

and b

j

(v) so as to maximize the pre-

dictiveness of the model. Simultaneously learning both

action and perception models presents di�culties since

the true class of the world is never directly revealed to

the system. If the true class of the world were known

at each instant, the problem would be trivial since the

transition and observation frequencies could simply be

counted and used. Nevertheless, it is possible to use

the probability distribution ~�(t), representing the be-

lief about the class of the world. For example, if at

time t

1

the DROP action is executed, we can use ~�(t

1

)

and ~�(t

1

+ 1) to assess the expected, rather than the

actual, transition. If �

2

(t

1

) = 0:6 and �

7

(t

1

+1) = 0:9,

then the count of the number of times that the DROP

action results in a transition from class 2 to class 7 is

incremented by 0:6 � 0:9 = 0:54. After the expected

counts are tallied, the counts are divided as usual to ob-

tain expected frequencies, which are then used for the

resulting model probabilities. Before frequency count-

ing, the Baum forward-backward procedure

[

Rabiner,

1989

]

is used to obtain improved an estimate for ~�.

The Baum forward-backward procedure is an e�cient

dynamic programming algorithmwith a run-time com-

plexity of O(m � j�j), where m is the length of the ex-

perience trace, and j�j is size of the model (i.e., the

number of probabilities in the model).

After the model (denoted by �) has been adjusted



using the above procedure, the process must be re-

peated until quiescence is reached. In the current sys-

tem, quiescence is detected when no parameter of the

model changes by more than 0.01. Let A(t) denote the

action taken at time t.

[

Baum et al., 1970

]

proved that

each iteration of this algorithm is guaranteed to im-

prove the predictive power of the model, measured by

Pr(v(0); :::; v(m)jA(1); :::;A(m); �), until quiescence is

reached. The algorithm for this portion of the model

learning is a variant of the \Balm-Welsh" algorithm for

maximum likelihood estimation adapted here to learn

Partially Observable Markov Decision Processes.

Discovering New Distinctions

It is generally not known beforehand how many classes

su�ce for obtaining the necessary level of predictabil-

ity, or what these classes are. The second portion of the

algorithm is responsible for detecting when the current

model is missing important distinctions and for incor-

porating them into the model.

The primary challenge in discovering important dis-

tinctions is detecting the di�erence between random

chance and underlying hidden inuences missing from

the current model. This is done in the system by per-

forming two or more experiments under slightly di�er-

ent conditions and comparing the experiences. When

the behavior of the system di�ers by a statistically sig-

ni�cant amount between experiments, it is determined

that an underlying inuence is missing from the model

(the unknown inuence is at least partially determined

by the experimental conditions), and so a new distinc-

tion is introduced. In the current case, this turns out to

be equivalent to detecting when the Markov property

of the model does not hold.

When the model learning algorithm is invoked, a

sequential list of action-observation pairs has already

been recorded and given to the algorithm as input.

This experience is partioned into two groups with the

earliest half forming the �rst group and the latest

half forming the second group. Because reinforcement

learning was actively changing the agent's policy while

the experience was being gathered, the experimental

conditions (determined by the policy) will be slightly

di�erent between the two groups. This forms the basis

for detecting a missing distinction.

For each class i of the model, the expected frequen-

cies from each group are tallied. For each action A

and each class j, this yields the estimates

1

t

A

i;j

and

2

t

A

i;j

for the number of expected transitions from i to

j with action A for groups 1 and 2 respectively. These

two sampled distributions are compared for a statisti-

cally signi�cant di�erence using the Chi-squared test.

A similar test is performed for the observation counts

1

u

j

(v) and

2

u

j

(v), the expected number of times v is

observed while in class j. If either test shows a sta-

tistically signi�cant di�erence in distribution, class i is

split into two, causing the total number of classes, n, to

increment by 1. This is somewhat reminiscent of the G

algorithm

[

Chapman and Kaelbling, 1991

]

. Whenever

a class is split, the complete model learning algorithm

is recursively re-invoked.

Experimental Results

This section reports the results of applying the com-

plete system to a simple simulated docking application

with incomplete perception, non-deterministic actions,

and noisy sensors. The scenario consists of two space

stations separated by a small amount of free space with

loading docks located on each station. The task is to

transport supplies between the two docks. Each time

the agent successfully attaches to the least-recently vis-

ited station, it receives a reward of +10. In order to

dock, the agent must position itself in front of the sta-

tion, with its back to the dock, and backup. When-

ever the agent collides with the station by propelling

forward into the dock, it receives a penalty of -3. At

all other times, it receives zero reinforcement.

Three actions are available to the agent: GoForward,

Backup, TurnAround. The agent is always facing ex-

actly one of the two stations, and TurnAround causes

it to face the other. Depending on the current state,

the GoForward action either detaches from the load-

ing dock, launches into free space, approaches the next

station from free space, or collides (with a penalty)

into a space station directly ahead. Backup is almost

the inverse of GoForward except that it is extremely

unreliable. Backup launches from a station with prob-

ability 0.3. From space, it approaches a station in re-

verse with probability 0.8. And from docking position,

it fails to dock 30% of the time. When actions fail,

the agent sometimes remains in the same position, but

sometimes accidentally gets randomly turned around.

The agent's perception is very limited. From a sta-

tion, it sees the station or only empty space depending

on which way it is facing. In free space perception is

noisy: with probability 0.7 the agent sees the forward

station, otherwise it sees nothing but empty space.

The two stations appear identical to the agent except

that the least-recently visited station displays an \ac-

cepting deliveries" sign which is visible to the agent

exactly when the station is visible. When docked, only

the interior of the dock itself is visible. The +10 reward

is also observable for one time unit after receipt.

The system began with a randomly generated two

state predictive model and zero-initialized Q values

(i.e., V [�; �] = 0). Model learning was invoked after

each m = 1000 actions to improve the model. The

complete cycle was repeated 15 times. A discounting

rate of  = 0:9 and learning rate of � = 0:1 were used

for reinforcement learning. To detect missing distinc-

tions with the Chi-Squared test, a signi�cance level of

� = 0:05 was used. Throughout the run, the agent

executed a random action with probability 0.1, and

executed the action with the largest Q the rest of the

time.

In Figure 2, one dot was plotted corresponding to
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Figure 2: Estimated Performance during Training.

the agent's best estimate for the utility of the cur-

rent choice of action at each decision cycle

3

. From

the density of dots, �ve lines appear to eventually

stand out. These correspond to the �ve states of the

world where the agent spends most of its time once

the optimal policy is learned. From a loading dock,

the agent detaches (with GoForward), launches into

free space (GoForward), approaches the next station

(GoForward), turns around, and then backs up to at-

tach to the dock. From the egocentric viewpoint of the

agent, it then appears to be where it had started. By

the end of the run, it recognizes these �ve situations,

and the Q value estimate for each is fairly stable, form-

ing the �ve discernible lines on the graph. Although

these �ve are the most frequently visited states, by the

end the system actually learns a predictive model with

a total of 11 classes.

The �nal learned model was compared to the simu-

lator's reality. In one case, the learned model distin-

guishes two di�erent regions of free space, one where

the station is visible, the other where it is not, and

sets the transition probabilities of launching into each

respective region of free space to 0.7 and 0.3. The

model is exactly equivalent to the simulator but based

upon a di�erent ontology. Along the optimal path,

the model is detailed and accurate, although there are

two extra classes that are not necessary. O� the op-

timal path, all existing (and no spurious) distinctions

are identi�ed, but a few transition probabilities are in

error (undoubtedly due to the lack of experience with

those situations).

3

Using the agent's own estimate of its performance can

sometimes be a misleading indication of actual perfor-

mance. By comparing a graph of measured cumulative

discounted rewards to Figure 2, it was veri�ed that Fig-

ure 2 does give a valid indication of actual performance,

although Figure 2 does make the convergence rate appear

somewhat worse than it actually is. However, Figure 2 pro-

vides far more information, both about actual performance

and about the internal workings of the system.

Additional Issues

The system has been run on several additional sim-

ple simulated applications, and from this experience,

a number of issues have been identi�ed. On a few ap-

plications, the system performed poorly, leading to an

investigation for the underlying reasons and the identi-

�cation of the �rst few issues below. A few additional

concerns are also listed. Dealing with all these limita-

tions constitutes area for future research.

The Exacerbated Exploration Problem: The explo-

ration/exploitation tradeo� is a known di�culty with

reinforcement learning in general (

[

Kaelbling, 1990

]

,

[

Thrun, 1992

]

); however, the problem is ampli�ed

tremendously by perceptual incompleteness. The ad-

ditional aggravation stems from the fact that the state

space structure is not provided to the system, but

must instead be discovered. The result is that the

agent sometimes cannot tell the di�erence between un-

explored portions of the world and heavily explored

portions of the world because until it has discovered

the di�erence, the two areas look the same. This is an

inherent problem accompanying incomplete perception

and not unique to the current approach. Increasing the

frequency of choosing random actions from 0.1 to 0.3

sometimes overcame this problem, but there is reason

to believe that e�ciently overcoming this problem in

general may require the use of an external teacher (e.g.,

[

Whitehead, 1991

]

,

[

Lin, 1991

]

).

The Problem of Extended Concealment of Crucial

Features: Some domains have the characteristic that

some hidden feature or inuence is crucial to perfor-

mance, but the feature only rarely allows its inu-

ence to be perceived. This is perhaps the single most

signi�cant limitation to the predictive distinction ap-

proach. The problem is that high quality prediction is

possible even when the crucial feature is ignored. In

other words, the internal state that is useful for making

predictions may, in some cases, not include the inter-

nal state necessary for selecting actions. This prob-

lem arises in the space station docking domain when

the \accepting deliveries" sign is not used, leaving the

agent the di�cult task of discovering the crucial con-

cept of \least-recently visited."

Oversplitting: It is common for the current system

to learn more classes than are actually necessary. Con-

glomerating nearly identical states may be desirable

(c.f.,

[

Mahadevan and Connell, 1991

]

).

The Utile-Distinction Conjecture: Is it possible to

only introduce those class distinctions that impact util-

ity? If the color of a block is perceivable but irrelevant

to the agent's task, is it possible for the agent to avoid

introducing the color distinction into its model, while

at the same time learning distinctions that are utile? I

conjecture that this is not possible and that it is nec-

essary to recognize a distinction and gather experience

after the distinction is identi�ed in order to obtain any

information regarding the utility of the distinction. A

refutation to this conjecture would be extremely in-



teresting and would also provide an ideal solution to

the input generalization problem (

[

Chapman and Kael-

bling, 1991

]

).

Conclusion

Perceptual aliasing presents serious troubles for stan-

dard reinforcement learning algorithms. Standard al-

gorithms may become unstable as the result of percep-

tually identical states that require di�erent responses

(

[

Whitehead and Ballard, 1991

]

). The predictive dis-

tinction approach uses a predictive model to track por-

tions of the world that are not totally observable. It

assumes an adequate model cannot be supplied to the

system, so the model itself must be learned. The model

is fully probabilistic and learning it involves not only

learning transition and perception probabilities, but

also discovering the important underlying class distinc-

tions that exist in the world. Bayesian updating and

conditioning track the world state, and a variation of

Q-learning

[

Watkins, 1989

]

learns a mapping from the

internal state of the model to the utility of each pos-

sible action. The overall approach is based upon the

central idea that internal state useful for prediction

may capture the important information for choosing

actions missing from perceptually aliased inputs.
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