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ABSTRACT

Bayesian-style conditioning of an exact probability distribution can be done in-

crementally by updating the current distribution each time a new item of evidence

is obtained. Many have suggested the use of lower and upper probabilities for rep-

resenting bounds on probability distributions, which naturally suggests an analo-

gous procedure of incremental conditioning using forms of interval arithemetic.

Unfortunately, conditioning of lower and upper probability bounds looses infor-

mation, yielding incorrect bounds when updates are performed incrementally and

making the conditioning operation non-commutative. Furthermore, when lower

probability functions are represented by way of their M�obius transforms, the op-

eration of conditioning can cause an exponential explosion in the number of non-

zero M�obius assignments used to represent the function. This paper presents an

alternative representation for lower probability that overcomes these problems.

By representing the results of both Dempster conditioning and strong condition-

ing, the representation indirectly encodes lower probability bounds in a form that

allows updates to be performed incrementally without a loss of information. Con-

ditioning with the new representation does not depend on the order of updates

or on whether evidence is incorporated incrementally or all at once. The bounds

obtained are exact when the original lower probabilities satisfy a property called 2-

monotonicity. Although the new representation encodes more information about

probability bounds than the straight representation, updates on the new repre-

sentation never increase the number of M�obius assignments used to encode the

Address correspondence to Lonnie Chrisman, School of Computer Science, Carnegie

Mellon University, Pittsburgh, Pa 15213-3891; e-mail: chrisman@cs.cmu.edu

International Journal of Approximate Reasoning 1995 13:1{25

c

 1995 Elsevier Science Inc.

655 Avenue of the Americas, New York, NY 10010 1



2

lower probability | a considerable improvement over the worst-case exponential

increase seen with the straight representation. The new representation helps to

improve the e�ciency and convenience of representing and manipulating lower

probabilities.

1. Introduction

The Bayesian probabilistic framework provides a methodology for rea-

soning about uncertainty ([31], [16], [21], [36]). Belief is represented by a

single probability distribution and conditioning serves as the primary tool

for updating belief as new information is obtained. An important char-

acteristic of the updating process is that it can be done incrementally. In

other words, each time a new fact is learned about the current situation, the

probability distribution representing belief can be replaced by an updated

distribution without any loss of information about the true situation

1

.

The use of a single exact probability distribution in the pure Bayesian

framework is often challenged. Some feel that an exact distribution fails

to satisfactorily distinguish between uncertainty and ignorance or between

certainty and con�dence ([51], [26], [28], [27], [30], [61], [56], [39], [11], [40],

[55], [53]). Others point out that often insu�cient knowledge is available or

that it is too time-consuming to obtain the necessary knowledge to warrant

the precision inherent in exact probabilities ([17], [52], [54], [11], [2], [33],

[29], [14]). In response to these objections and others, many researchers

have suggested replacing the use of an exact probability distribution with

probability intervals, where the intervals are speci�ed by lower and upper

bounds. Lower and upper probability bounds have also been found useful

in the context of a traditional Bayesian framework for approximate compu-

tation ([8]), and to achieve a greater level of robustness ([60], [22, Chapter

10]).

Lower probabilities can be used to represent probability bounds ([41],

[18], [12], [59], [5], [38], [14]). Let 
 denote a set of mutually exclusive and

exhaustive situations. A lower probability,P , is a function P : 2




! [0; 1]

(satisfying certain conditions to be discussed in Section 2) that represents

lower bound constraints on probability distributions. A probability dis-

tribution, P , is consistent with P if for every A � 
, P (A) � P (A). P

can therefore be viewed as representing a set of probability distributions |

namely, those that are consistent with it. Probability distributions, belief

functions

2

([41], [26], [15]), lower envelopes ([57], [34]), inner and outer

1

See, for example, Proposition 3.1 in [20].

2

While Belief Functions are mathematically instances of Lower Probability functions,

they are often used in a manner inconsistent with a Lower Probabilistic interpretation.
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measures ([15]) and probability bounds on individual elements of 
 ([17],

[56]) are all special cases of lower probabilities.

Using a lower probability representation, it is natural to attempt in-

ference in an analogous manner to Bayesian inference. Beginning with a

lower probability function, one would incrementally update this function as

new evidence arrives. But unlike the case with exact probabilities, a lower

probability representation alone is not su�cient for capturing all the infor-

mation about the current situation that is available at the time of update.

In other words, each lower probability update looses information, such that

bounds obtained after two or more successive updates may disagree with

the bounds that would be obtained by conditioning the original belief in a

single step with all available evidence ([37]). In fact, in general the bounds

obtained will depend upon the order in which updates are performed ([20]).

This loss of information is not a result of any particular conditioning rule,

but is a result of the fact that the representation of lower probability is

not powerful enough to capture all the information that is available at the

time of an update ([24]).

In addition to the loss of information problem, a second problem can

impede the use of lower probability intervals. In practical applications, one

is often interested in \sparse" lower probability functions | representations

where probability bounds can be described with a small number of mass-

assignments. This is because in the general (non-sparse) case, the number

of parameters in a lower probability speci�cation can be enormous. For

example, if N = j
j is �nite, as many as 2

N

numbers may be required. To

take advantage of sparsity, one can represent the M�obius Transform of a

lower probability function inside a computer rather than explicitly storing

the function itself ([42]). In M�obius space, each non-zero set assignment

can be viewed as one constraint, and a lower probability function is sparse

when the overwhelming majority of M�obius set assignments are zero. A

problem with the use of standard lower probability representations is that

the conditioning of these representations does not preserve sparsity. After

an update, the number of mass-assignments necessary to represent the

function can grow considerably | increasing exponentially in some cases.

This paper introduces an alternative representation and method for con-

ditioning lower probability functions that addresses the above two di�cul-

ties. It allows for incremental updating of lower probabilities without a loss

of information, and when a sparse function is updated, the result remains

sparse. Furthermore, it is convenient to perform the update in M�obius

space.

Much of the existing literature concerning lower and upper probabil-

Both [41] and [20] discuss how belief functions may have either an evidential interpre-

tation, as in the Dempster-Shafer theory of evidence ([40], [42]) and Transferable Belief

Model ([50], [49]), or a lower probabilistic interpretation.
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ity centers around the Dempster-Shafer theory ([40]). Many have at-

tempted to relate the theory to probability theory and/or lower probability

interpretations

3

([19], [26], [28]). In this context, an interesting aspect of

the representation introduced here is a relationship that is highlighted be-

tween Dempster's Rule of Conditioning and lower probabilistic conditioning

(or convex conditioning). In particular, it is found that Dempster's Rule of

Conditioning indirectly captures part (more than half, but not all) of the

information necessary to maintain lower and upper probability intervals.

Section 2 reviews background, terminology and known results concern-

ing lower probability. Section 3 demonstrates with an example the loss of

information that results when a straight lower probability representation

is updated incrementally. A solution is presented in Section 4 where a new

representation for lower probability information is introduced, and its rep-

resentation in terms of the M�obius transform is given in Section 5 followed

by an example in Section 6 to demonstrate how the new representation is

used. In Section 7 the complexity of updates is examined, where it is shown

that the straight lower probability representation does not take advantage

of sparsity while the new representation does. We conclude in Section 8.

2. Lower Probability

We begin in this section by reviewing terminology and known results

concerning lower probability. Many similar properties and terminology

have been developed and utilized by [6], [41], [22, Chap. 10], [58], [59], [35],

[5], [34], [24] and others.

Every probabilistic argument begins with a mutually exclusive and ex-

haustive set of possible situations, denoted by 
 and termed a frame of

discernment. A probability distribution on 
 is an additive set-function

P : 2




! [0; 1] with P (;) = 0 and P (
) = 1. It is additive in that for any

A;B � 
 with A \B = ;

P (A [B) = P (A) + P (B)

We denote the set of all probability distributions on 
 by M.

Lower and Upper Probability functions, P and P , are also set-functions

on 
 satisfying the following properties for any A;B � 
 with A \B = ;:

1. P (;) = P (;) = 0

2. P (
) = P (
) = 1

3

Some work has also strived to remove any relation whatsoever to a probabilistic

interpretation (e.g., [50], [48]).
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3. P (A) + P (

�

A) = 1

4. P (A) + P (B) � P (A [B) (Super-Additivity)

5. P (A) + P (B) � P (A [B) (Sub-Additivity)

where

�

A denotes 
� A, the complement of A.

Property 3 above speci�es that P and P are mutual conjugates, and

therefore it is only necessary to store one or the other since either can be

readily obtained from the other. It is always the case that P (A) � P (A).

We say a probability distribution P is consistent with a lower probability

P (and implicitly its conjugate P ) when for every A � 
, P (A) � P (A).

We denote by P(P ) the set of all distributions consistent with P . The

above conditions that de�ne lower probabilities are not strong enough to

ensure that P(P ) 6= ;.

Suppose there exists a non-empty P �M such that for all A � 


P (A) = inf

P2P

P (A)

P (A) = sup

P2P

P (A)

Then P is called a lower envelope and P is its conjugate, called an upper

envelope. Every lower envelope is also a lower probability, but the converse

does not hold.

Every lower probability function is monotone (sometimes called 1 �

monotone), meaning that

A � B ) P (A) � P (B)

A stronger property called 2-monotoncity is often useful [6]. A lower prob-

ability P on 
 is 2�monotone when for every A;B � 
,

P (A) + P (B) � P (A \B) + P (A [B)

Two-monotonicity is a su�cient (but not necessary) condition to ensure

that P is a lower envelope. Also, it can be shown ([59]) that P is 2-

monotone if and only if for every A;B � 
, A \ B = ;, there exists

P 2 P(P ) such that

P (A) = P (A) and P (B) = P (B) (1)

The extra property of 2-monotonicity is often quite useful, particularly

because it is often the weakest condition necessary for obtaining simple

but exact closed form formulas for various inferences. It is the strongest

property we will utilize for the results in this paper.

For the remainder of this paper, we will only consider �nite frames of

discernment (i.e., j
j < 1). Suppose 
 is a �nite frame of discernment,
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and P is a lower probability function de�ned on 
. TheM�obius Transform

of P is the set function m : 2




!R de�ned by ([40, pg. 39])

m(A) =

X

B�A

(�1)

jA�Bj

P (B) (2)

If m(A) � 0 for all A � 
, then P is called a Belief Function, and read-

ers familiar with Dempster-Shafer theory will recognize m as the mass-

assignment function; however, it is not required for P to be a belief func-

tion for the M�obius Transform to be de�ned, and in general, m(�) may be

negative on some sets. Belief Functions are equivalent to what [6] termed

1-monotone capacities ([55]). Every belief function is also 2-monotone,

and therefore is a lower envelope, and therefore is a lower probability, but

2-monotone lower envelopes are not, in general, belief functions.

The sets with non-zero M�obius assignments are termed the focal elements

of P .

The M�obius Transform is information preserving, such that the original

function P can be recovered from m using the Inverse M�obius Transform

given by

P (A) =

X

B�A

m(B) (3)

The original proof of this inverse relationship was given by [40, Theo-

rem 2.2] in the context of belief functions, but his proof did not rely on

the non-negativity of m(�) so it holds for more general lower probability

functions as well. The same proof is rewritten in terms of the more general

case in [5, Appendix] (see also [25]). The upper probability function is also

readily available from the M�obius Transform using

P (A) = 1� P (

�

A) =

X

B 6�

�

A

m(B) (4)

We can interpret each non-zero M�obius assignment as a constraint on

the allowable probability distributions. A positive assignment, m(A) = x,

speci�es that x units of probability mass is constrained to the set A, but

within A may be redistributed arbitrarily. A negative mass assignment,

m(A) = �x, speci�es that x units of probability anti-mass is constrained to

the set A and can be redistributed onto the positive probability mass within

A so as to cancel out an equivalent amount of positive probability mass.

We can therefore view the number of focal elements as a measure of the

number of constraints specifying the bounds in a lower probability function.

Other forms of constraints are also possible, but are not considered in this

paper.

The most general lower probability requires 2

N

numbers (N = j
j) to

specify either P or its M�obius Transform m. For any sizable domain, this



7

is prohibitive; however, for many applications where lower probabilities

might be of interest, the probability bounds arise from a relatively small

number of mass assignments. It is therefore typically most convenient to

represent m inside a computer, rather than P , since only the non-zero

assignments must be enumerated. When the number of focal elements is

small, we say that P is sparse.

2.1. An Example

We introduce a simple example here which will be used to demonstrate

some of the basic ideas. The example is entirely hypothetical and is not

intentionally based on any accepted paleontological fact.

A group of paleontologists are beginning to hunt fossils in a previously

unexplored but very unusual region of northwest Burkawaland (a �cticious

place). The only fossils they expect to �nd are those of mammals, birds,

reptiles and �sh, but because they know so little about the area and because

the region is so unusual, they are uncomfortable with the idea of estimating

an exact a priori distribution over fossil types. They choose instead to

estimate a prior lower probability function.

The only previous study of the area stated that out of 100 fossils that

had been examined, three were determined to be of mammalian origin, and

50 were clearly from �sh. There were 46 specimens that were believed to

be either a species of �sh or reptile, but with the tools available at the

time of the study, there was no way to determine which. Finally, there was

one specimen that might have been either a bird or a reptile, but again,

that could not be determined. Based solely on this study, by accepting

the proportions found in the study as being indicative of the population

of fossils as a whole, the group adopts the lower probability distribution

whose M�obius Transform is the following:


 = fmammal; bird; reptile; fishg

m

0

(fmammalg) = 0:03

m

0

(ffishg) = 0:5

m

0

(freptile; fishg) = 0:46

m

0

(fbird; reptileg) = 0:01

m

0

(all other sets) = 0 (5)

This function speci�es probability bounds | for example P

0

(fbird; fishg)

is bounded by P

0

(fbird; fishg) = 0:5, and P

0

(fbird; fishg) = 0:97. The

example happens to be a belief function (and therefore, also a 2-monotone

lower envelope).
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3. Incremental Conditioning

Conditioning is the primarymechanism for incorporating evidence within

a Bayesian framework. In this framework, one begins with knowledge

about uncertainty explicitly encoded in the form of an a priori probability

distribution P

0

. After learning that E

1

� 
 is true, an updated belief,

P

1

: 2




! [0; 1], is obtained using

P

1

(A) = P

0

(AjE

1

) =

P

0

(A \E

1

)

P

0

(E

1

)

This is the de�nition of conditional probability. When a second item of

evidence is obtained, E

2

, the process repeats using the �rst updated belief

as the starting point:

P

2

(A) = P

1

(AjE

2

) =

P

1

(A \E

2

)

P

1

(E

2

)

[= P

0

(AjE

1

; E

2

)]

Conditional probability has the very important property that the same

result is obtained independent of the order of updates and whether or not

updates are performed incrementally.

Consider the same incremental process stating with the lower probability

function in (5) from the example of Section 2.1. Suppose a new fossil is dis-

covered, and the team now wishes to determine its type (and associated un-

certainty). First, a teammember notes that the animal had legs, and there-

fore was not a �sh (E

1

= fmammal; bird; reptileg). What does it mean to

update the lower probability function? Ideally, the result should represent

the envelope obtained by collecting each probability distribution consistent

with the original function after it has been updated with the new evidence.

This desired envelope after learning E

1

= fmammal; bird; reptileg is given

by the following (again, the M�obius Transform is shown):

m

1

(fmammalg) = 0:06

m

1

(fmammal; reptileg) = 0:69

m

1

(fbird; reptileg) = 0:25 (6)

Later it will be shown how such computations can be performed. The

bounds given by this function are tight | for any set A � 
, one can �nd

a probability distribution consistent with the initial belief that yields the

bound after conditioning. For example, the bound P (fmammal; reptileg) =

0:75 is obtained from the distribution h:03; :01; 0; :96i.
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Suppose another test reveals that the specimen was de�nately not that of

a reptile, thus indicating that the classi�cation is inE

2

= fmammal; bird; fishg.

If (6) is updated, as one would do using incremental updating, the following

M�obius function is obtained:

m

2

(fmammalg) = 0:19

m

2

(fmammal; birdg) = 0:81 (7)

One would hope that by updating the original belief, m

0

, in one step with

all the evidence learned thus far, E = E

1

\E

2

= fmammal; birdg, the same

result would be obtained. Unfortunately, this is not the case. Updating

m

0

with fmammal; birdg yields:

m

3

(fmammalg) = 0:75

m

3

(fmammal; birdg) = 0:25 (8)

Comparing (7) and (8) shows that they are actually quite a bit di�erent

(e.g., P

3

(fmammalg)�P

2

(fmammalg) = 0:56). One might also consider

what happens if we perform the updates in the opposite order, �rst condi-

tioning onE

2

= fmammal; bird; fishg then onE

1

= fmammal; bird; reptileg.

Doing so in this example yields yet another result:

m

4

(fmammalg) = 0:62

m

4

(fmammal; birdg) = 0:38

The fact that all of these are di�erent is very dissatisfying and is something

that does not occur with exact probabilities. The problem was previously

noted by [20] and [37], and similar problems for other forms of interval

probabilities (e.g., Dempster-Shafer) have also been discussed in the liter-

ature ([1]).

The reason that incremental updating does not work is that the lower

probability representation is not su�ciently powerful to represent all the

information that is available ([24]). Each time an update is performed,

some information is lost, and the information that is lost can be important

for determining bounds for subsequent updates. In other words, some new

consistent distributions are introduced which are not the result of the orig-

inal set of consistent distributions. An analogy is useful for seeing how this

is possible. Figure 1(a) shows a set of points in the plane which is exactly

represented by the indicated bounds. After a transformation is applied

to these points, the resulting bounds can again be perfectly represented,

as shown in Figure 1(b), even though the bounds do not capture the set

of points exactly. After a second transformation, Figure 1(c), the loss of

information is re
ected in the incrementally updated bounds.
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Figure 1. The loss of information from incremental updating of bounds.

Overcoming the loss of information with incremental updates requires

a more powerful representation. One such representation that has been

studied by [2], [56] and others is a system of linear constraints in the

(N � 1)-dimensional simplex of probability vectors, where the linear con-

straints specify a convex polytope with a �nite number of sides. While

such a representation does provide su�cient information to enable incre-

mental updates, it is not as popular as lower probability representations,

primarily because it is much more tedious to use and because the number

of parameters in such a representation can quickly become unmanageable,

as discussed in [56]. Walley [58] has also introduced a more general repre-

sentation called lower previsions, which is equivalent to closed convex sets

of probabilities ([22, Page 256], [58, Section 3.3]).

4. A New Representation

This section presents a new representation that is quite convenient to

use, and which captures all the information necessary for obtaining correct

bounds after incremental updating. When the starting lower probability

function is 2-monotone, the bounds are guaranteed to be tight (i.e., the

bounds will be achieved for some initial consistent prior probability distri-

bution). The following section examines its M�obius Transform.

Suppose P is an initial lower probability function. After learning E =

E

1

\E

2

\ :::, the desired updated function (whether it is computed incre-

mentally or not) is

P (AjE) = inffP (AjE) : P 2 P(P ); P (E) > 0g (9)
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This form of conditioning has been referred to as convex conditioning ([26])

and the cautious Bayesian ([14]) approach to conditioning. Of course, it

would not be feasible to enumerate all consistent probability distributions

and then perform the above inf operation, but it is easy to obtain a bound

for P (AjE). Recall the following rule of probability, where P is a proba-

bility distribution:

P (AjE) =

P (A\E)

P (A \E) + P (

�

A \E)

(10)

Since for every set B � 
, P (B) � P (B) � P (B) are lower and upper

bounds on P , we can plug these bounds into (10) to obtain

P (AjE) �

P (A \E)

P (A \E) + P (

�

A \E)

(11)

Therefore, the right hand side of (11) is a lower bound. The lower bound

is unde�ned when P (E) = 0 and requires a somewhat di�erent treatment,

considered later, when P (E) > P (E) = 0. Recall that when P is 2-

monotone, there exists a distribution P such that P (A \ E) = P (A \E)

and P (

�

A \ E) = P (

�

A \ E), so that the bound is tight when P is 2-

monotone. This formula has been identi�ed previously for the special case

of belief functions by [10, Equation 4.8], [58, pg. 301], [38], [15], [60], [24],

[49] and [9]. Additional properties for the belief function case are given in

[15] and [24]. As discussed in the previous section, even when the bounds

are tight, information may be lost.

Other forms of conditioning are possible, although each returns some-

thing di�erent, so the results must be interpreted with caution. For exam-

ple, Dempster [10] introduced the following conditioning rule:

P (Ajj

�

E) =

P (A \E)

P (E)

(12)

It is unde�ned when P (E) = 0. The rule is called Dempster's Rule of

Conditioning. The notation jj

�

is used here to distinguish this rule of

conditioning from (11) and from other possible conditioning rules. The in-

terpretation of this rule has been considered in [40], [44], [42], and [50] and

is often intuitively viewed as a measure of evidential support | the degree

to which the evidence supports the hypotheses. However, we can see that

Dempster's Rule is not appropriate for directly describing lower probabil-

ities as we desire since, for example, the bounds produced by Dempster's

Rule are too narrow for our desired probabilistic interpretation ([10]):

P (AjE) � P (Ajj

�

E) � P (AjE) � P (Ajj

�

E) � P (AjE) (13)
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A dual to Dempster's conditioning rule is possible:

P (Ajj

�

E) =

P (A \E)

P (E)

(14)

It is unde�ned when P (E) = 0. This has been called strong conditioning

([32], [13]) and geometric conditioning ([55], [23], [47], [46]) and might be

viewed as a measure of evidential predictability | the degree to which

the initial belief predicts the evidence. An interpretation of this rule is

considered in [47]. Like Dempster's rule, the bounds produced by this rule

are too tight for the desired probabilistic interpretation.

Neither (12) nor (14) produce the lower envelope bounds that we are

interested in. However, by plugging (12) and (14) into (11), we obtain

P (AjE) �

P (Ajj

�

E)P (E)

P (Ajj

�

E)P (E) + P (Ajj

�

E)P (E)

(15)

This is de�ned when P (E) > 0, and the bound is guaranteed to be tight

when the original lower probability function is 2-monotone. In what follows,

we will also handle the important case where P (E) > P (E) = 0. This

rule is the basis for our new approach to conditioning.

Although the lower probability bounds given by P (AjE) and P (AjE)

do not possess the representational power to prevent a loss of information,

the information contained jointly within P (Ajj

�

E) and P (Ajj

�

E), along

with two scalar values, do possess adequate information. These are not

the actual bounds | but they indirectly encode all the information that is

necessary to compute the desired bounds, using (15), for any proposition of

interest. After observing E, we maintain four items: P (Ajj

�

E), P (Ajj

�

E),

P (E), and P (E), the last two of which are simply scalars.

A �rst observation to make is that both P (Ajj

�

E) and P (Ajj

�

E) can

be computed incrementally, as the following theorem demonstrates.

Theorem 1. Let P and P be lower and upper probability functions. For

all sets A;E

1

; E

2

� 


P (Ajj

�

E

1

\E

2

) =

P (A \E

2

jj

�

E

1

)

P (E

2

jj

�

E

1

)

(16)

or P (�jj

�

E

1

\ E

2

) is unde�ned if P (E

2

jj

�

E

1

) = 0 or if P (�jj

�

E

1

) is

unde�ned. Also

P (Ajj

�

E

1

\E

2

) =

P (A \E

2

jj

�

E

1

)

P (E

2

jj

�

E

1

)

(17)
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or P (�jj

�

E

1

\ E

2

) is unde�ned if P (E

2

jj

�

E

1

) = 0 or P (�jj

�

E

1

) is un-

de�ned.

Proof Saying P (�jj

�

E

1

) is unde�ned is equivalent to saying P (E

1

) =

0, and when this is the case, then from monotonicity, P (E

1

\E

2

) = 0. If

P (E

2

jj

�

E

1

) = 0 then by (14), P (E

1

\E

2

) = 0, so in either of these cases,

P (�jj

�

E

1

\E

2

) is unde�ned. Otherwise, from de�nition (14):

P (Ajj

�

E

1

\E

2

) = P (A \E

1

\E

2

)=P (E

1

\E

2

)

=

P (A \E

1

\E

2

)

P (E

2

)

=

P (E

1

\E

2

)

P (E

2

)

=

P (A \E

1

jj

�

E

2

)

P (E

1

jj

�

E

2

)

The proof of (17) follows the same form.

A second observation to make is that P (E) and P (E) can also be

computed incrementally when we maintain the four items of information

mentioned previously. This follows directly from (14) and (12) as follows:

P (E

1

\E

2

) = P (E

2

jj

�

E

1

) � P (E

1

) (18)

P (E

1

\E

2

) = P (E

2

jj

�

E

1

) � P (E

1

) (19)

The following theorem shows that the four items of information (P (�jj

�

E),

P (�jj

�

E), P (E), and P (E)), which we now know can be updated incre-

mentally, are su�cient for determining the lower (and upper) probability

bounds.

Theorem 2. Let P and P be conjugate lower and upper probabilities.

Then for A;E � 
, if P (E) > 0

P (AjE) �

P (Ajj

�

E)P (E)

P (Ajj

�

E)P (E) + P (

�

Ajj

�

E)P (E)

(20)

or is unde�ned if P (E) = 0. If P (E) > P (E) = 0, then for all A � 


P (AjE) �

�

1 if P (Ajj

�

E) = 1

0 if P (Ajj

�

E) < 1

(21)

If P is 2-Monotone, then the bounds are tight, so that

P (AjE) =

P (Ajj

�

E)P (E)

P (Ajj

�

E)P (E) + P (

�

Ajj

�

E)P (E)

(22)
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if P (E) > 0 and

P (AjE) =

�

1 if P (Ajj

�

E) = 1

0 if P (Ajj

�

E) < 1

(23)

if P (E) > P (E) = 0.

Proof Consider P (E) > 0. Let P 2 P(P ), then P (A\E) � P (A\E)

and P (

�

A \E) � P (

�

A \E). Therefore,

P (AjE) �

P (A \E)

P (A \E) + P (

�

A \E)

and therefore P (AjE) � the same. The �rst part then follows from (14)

and (12) by plugging in P (A \ E) = P (Ajj

�

E)P (E) and P (

�

A \ E) =

P (

�

Ajj

�

E)P (E).

In the case where P (E) > P (E) = 0, if P (Ajj

�

E) < 1 the bound is

trivially true. If P (Ajj

�

E) = 1 then P (

�

Ajj

�

E) = 0 = P (

�

A\E)=P (E) so

P (

�

A \E) = 0 and P (

�

AjE) = 0 for any P 2 P(P (�jE)), so P (AjE) = 1.

Suppose P is 2-Monotone. Note that (A \E) \ (

�

A \E) = ;; therefore,

there exists a P 2 P(P ) such that P (A\E) = P (A\E) and P (

�

A\E) =

P (

�

A\E). Then (20) reduces to equality, as does (21) when P (Ajj

�

E) < 1.

When P (Ajj

�

E) = 1, the tightness of (21) is trivially true.

The rule in (20) reduces to (11) for one-step conditioning, but as we

discussed, (11) looses information and is thus problematic with incremental

updates. The case when P (E) > P (E) = 0 was not considered by others

such as [15] who have discussed (11), despite the fact that pragmatically

it is important to know what to do in that case since it may in fact occur.

Finally, it should be noted that when P is a probability distribution (and

therefore also 2-monotone), the theorem reduces to the well-known Bayes'

rule in probability theory.

It is also interesting to note from (23) that once an item of evidence is

obtained such that P (E) = 0, Dempster's rule contains, from that point

on, all the information needed to compute the conditional lower probability.

5. M�obius Transforms m(�jj

�

E) and m(�jj

�

E)

In this section we identify the M�obius Transforms of P (�jj

�

E) and P (�jj

�

E).

We show that conditioning for these can be done directly in M�obius space,

which is very convenient when the functions themselves are represented in

the computer by their M�obius transforms. Although we do not use it here,
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[24] has previously shown how to compute P (�jE) as given in (11) directly

in M�obius space.

Theorem 1 (Dubois and Prade [13]) Let P be a lower probability, m its

M�obius transform, and A;E 2 
. Let P (Ajj

�

E) be de�ned by (14).

Then the M�obius transform of P (�jj

�

E) is given by

m(Ajj

�

E) =

(

m(A)

P (E)

if A � E

0 otherwise

(24)

Theorem 2 (Shafer [40]) Let P be an upper probability function, m its

M�obius transform, and A;E 2 
. Let P (Ajj

�

E) be de�ned by (12).

Then the M�obius transform of P (�jj

�

E) is given by

m(Ajj

�

E) =

1

P (E)

X

B:B\E=A

m(B) (25)

Theorem 2 is known as Dempster's Rule of Conditioning. It is a well-

known theorem (at least for the special case of belief functions) and is heav-

ily used in the contexts of Dempster-Shafer theory ([40]) and the Transfer-

able Belief Model ([50]).

The previous section showed that P can be updated incrementally, as can

P . It therefore follows that the M�obius transforms can also be updated

incrementally as follows (provided they are de�ned, i.e., that P (E

1

\E

2

) >

0 or P (E

1

\E

2

) > 0 respectively):

m(Ajj

�

E

1

\E

2

) =

(

m(Ajj

�

E

1

)

P (E

2

jj

�

E

1

)

if A � E

2

0 otherwise

(26)

m(Ajj

�

E

1

\E

2

) =

1

P (E

2

jj

�

E

1

)

X

B\E

2

=A

m(Bjj

�

E

1

) (27)

Implementing the update rules for m(�jj

�

E) and m(�jj

�

E) are quite easy.

When a new item of evidence E is obtained, m(�jj

�

E) is obtained by throw-

ing away any sets that are not totally contained within E and then normal-

izing the remaining M�obius assignments. Similarly, m(�jj

�

E) is computed

by throwing away any M�obius assignments are not compatible with E,

intersecting these with E, and then normalizing. Computing P (E) and

P (E) each require a summation over focal elements as given by (3) and

(4).
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6. Example

This section demonstrates the use of the new representation using the

example from Sections 2.1 and 3. The knowledge at any moment (after

learning E) is represented by the following four items: hm

�

;m

�

; p

�

; p

�

i,

where m

�

= m(�jj

�

E), m

�

= m(�jj

�

E), p

�

= P (E), and p

�

= P (E).

Initially, we can take E = 
, so that the initial knowledge is represented

by: hm

0

;m

0

; 1; 1i, where m

0

is given in (5).

Suppose it is �rst learned that the true situation is inE

1

= fmammal; bird; reptileg.

We compute p

1�

= P

1

(E

1

) = P

0

(E

1

jj

�


)P (
) by using (18), where

P

0

(E

1

jj

�


) is obtained from m

0

using (3). In this example, this yields

p

1�

= 0:04. Similarly, we use (19) and (4) to compute p

�

1

= P

1

(E

1

) =

0:5. Finally, we use (26) and (27) to compute m

1�

= m(�jj

�

E

1

) and

m

�

1

= m(�jj

�

E

1

) respectively. Our belief is now given by the four items:

hm

1�

;m

�

1

; 0:04; 0:5i, where

m

1�

(fmammalg) = 0:75 m

�

1

(fmammalg = 0:06

m

�

1

(freptileg) = 0:92

m

1�

(fbird; reptileg) = 0:25 m

�

1

(fbird; reptileg) = 0:02

Next, suppose it is learned that the true situation is inE

2

= fmammal; bird; fishg.

Precisely the same process is used, starting with hm

1�

;m

�

1

; p

1�

; p

�

1

i. First,

p

2�

= P

1

(E

2

jj

�

E

1

) � p

1�

= 0:75 � 0:04 = 0:03. Similarly, p

�

2

= P

1

(E

2

jj

�

E

1

) �

p

�

1

= 0:08�0:5 = 0:04. The new updated belief is given by hm

2�

;m

�

2

; 0:03; 0:04i,

where

m

2�

(fmammalg) = 1 m

�

2

(fmammalg) = 0:75

m

�

2

(fbirdg) = 0:25

Precisely the same result is obtained by conditioning the initial belief,

hm

0

;m

0

; 1; 1i with E

1

\ E

2

= fmammal; birdg, or by performing the up-

dates in the opposite order. With this representation, we can now compute

bounds for any proposition of interest. For example, for the set fmammalg

using (22)

P (fmammalgjE

1

\E

2

) =

1 � 0:03

1 � 0:03 + 0:25 � 0:04

= 0:75
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7. Sparsity

Even if one were willing to ignore the loss of information from a straight

lower-probability representation, there a still a complexity problem. Con-

sider a lower probability function whose M�obius transform has k focal ele-

ments. After updating using

P (AjE) =

P (A \E)

P (A \E) + P (

�

A \E)

(28)

the number of focal elements in the updated function may grow exponen-

tially to O(2

k

) focal elements. On the other hand, the number of focal

elements in the modi�ed representation from the previous two sections

actually never increases at all with new evidence. This may seem surpris-

ing since the modi�ed representation captures more information than the

straight representation, yet requires far fewer parameters to do so.

Ideally, the complexity of lower probabilistic inference should depend

primarily on the number of constraints de�ning the function rather than on

the size of the domain. In this way, we hope to take advantage of sparsity |

in our case where the number of focal elements is small compared to 2

j
j

.

The following example will demonstrate that an update with the straight

lower probabilistic representation given by (28) can increase the number of

focal elements exponentially. Recall that (28) produces tight bounds when

P is 2-monotone.

Suppose P has k focal elements denoted by the sets A = fA

1

; A

2

; :::; A

k

g,

such that any boolean combination of these sets is non-empty. An alter-

native way of stating this is to consider a surjective

4

mapping X : 
 !

f0; 1; 2; :::;2

k

� 1g, and take A

1

to be all elements ! 2 
 where the �rst

bit is set when the results of X(!) is written in binary, A

2

are those el-

ements with the second bit set, and so on. Clearly we are considering a

domain where j
j > 2

k

. For this example we can also assume that P is a

belief function and that the M�obius Transform assignment for focal element

i = 1; ::; k is m(A

i

) = 2

i�1

=(2

k

� 1). This m(�) has the property that the

sum of M�obius assignments for each subset of A is unique.

Let E = A

1

[ A

2

[ ::: [ A k

2

. For simplicity, assume k is even. We will

now count some of the focal elements in P (�jE) | it is not necessary to

count all of them because we can stop counting once we've accounted for an

exponential number of them. As exact formula for obtaining the complete

set of focal elements appears in [24, Section V].

4

A surjective mapping is a function with the property that for any value in the range

of the function, there is an input that maps to that value.
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When A � 
, let

lc

E

(A) = fA

i

2 A : A

i

� A \Eg

uc

E

(A) = fA

i

2 A : A

i

6� A [

�

Eg

We can think of these as the lower and upper core of A in the expression

P (AjE) =

P (A \E)

P (A \E) + P (

�

A \E)

In particular, lc

E

(A) and uc

E

(A) are the focal elements involved in the

computation of P (A \E) and P (

�

A \E) respectively.

Suppose A � A

1

, A 6= A

1

. Then A is not a focal element of P (�jE)

because P (A\E) = P (A) is zero for all such sets. However, A = A

1

will

be a focal element, lc

E

(A

1

) = fA

1

g, uc

E

(A

1

) = fA

2

; :::A

k

g, and

m(A

1

jE) = P (A

1

jE) =

P (A

1

\E)

P (A

1

\E) + P (

�

A

1

\E)

=

m(A

1

)

m(A

1

) +

P

k

i=2

m(A

i

)

Next, consider supersets ofA

1

that are not supersets of any ofA

2

; A

3

; :::; A

k

.

The numerator in (28) for these sets will again be m(A

1

), but the sec-

ond term of the denominator may change depending on the set. In fact,

we can identify the sets on which the second term of the denominator

change, which must therefore correspond to the addition of a focal ele-

ment in the updated belief. Suppose, for example, that B contains A

1

and is only one element short of being equal to A

1

[A

k

. Note that A

1

is

in fact the only focal element contained by B. Then it also follows that

lc

E

(B) = lc

E

(A

1

) = fA

1

g and uc

E

(B) = uc

E

(A

1

) = fA

2

; ::; A

k

g. But

uc

E

(A

1

[A

k

) = fA

2

; ::; A

k�1

g, so that the computation of P (A

1

[A

k

jE)

involves a di�erent upper core than the computation of P (BjE), a set that

is only one element smaller. It must therefore be the case that A

1

[A

k

\E

is a focal element in the updated function.

The same argument could have also been made for any of the sets

A

1

[ A k

2

+1

; A

1

[ A k

2

+2

; ::; A

1

[ A

k�1

, to identify a corresponding new fo-

cal element in the updated function. Furthermore, for each of these sets,

the entire argument can be repeated further using their supersets to ob-

tain additional focal elements. The result is as follows. Let I � J =

f

k

2

+ 1;

k

2

+ 2; :::; kg, then the set A

1

[

S

i2I

A

i

\E will be a focal element,

with the lower probability given by

P

 

A

1

[

[

i2I

A

i

\EjE

!

=

m(A

1

)

m(A

1

) +

P

A2uc

E

(A)

m(A)
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=

m(A

1

)

m(A

1

) +

h

P

k

2

i=2

m(A

i

) +

P

i2J�I

m(A

i

)

i

For each of the subsets of I, the upper core uc

E

(A

1

[

S

i2I

A

i

) is unique,

and due to the previous choice of initial mass assignment, this implies that

the updated lower probability is unique, and therefore there must be a

non-zero mass-assignment to account for the di�erence.

Thus far we have identi�ed a fraction of the sets that will be focal el-

ements in P (�jE). We have identi�ed one focal element for each subset

I � f

k

2

+ 1;

k

2

+ 2; :::; kg, making a total of 2

k=2

. Therefore, the number of

focal elements in P (�jE) is O(2

k

).

This example shows that the straight lower probability representation

cannot, at least in the worst case, take advantage of sparsity (where the

number of focal elements is much smaller than j
j).

Next, consider the number of focal elements in the modi�ed represen-

tation introduced in Sections 4 and 5. Recall from (24) that P (�jj

�

E) is

computed by deleting all focal elements of P (�) except those contained

within E, and then normalizing. Similarly, from (25), P (�jj

�

E) is com-

puted by deleting all focal elements from P (�) except those that intersect

E, intersecting the remaining ones with E and normalizing. Therefore, any

focal element of P (�jj

�

E) is also a focal element of P (�jj

�

E). Thus, we

need only count the focal elements of P (�jj

�

E). If P (�) has k focal ele-

ments, then P (�jj

�

E) is guaranteed to have less than k focal elements. We

see, therefore, that the number of focal elements in the new representation

can only decrease as additional evidence is incorporated.

It is surprising that the straight lower probability representation is at

the same time less informative and exponentially larger than our modi�ed

representation, but this is in fact what has just been shown. As a result,

the modi�ed representation is much more convenient to implement and use

when reasoning about lower probabilities.

8. Conclusion

Lower probability has been used in many instances in existing literature

in many di�erent contexts and for many di�erent reasons and purposes.

It has often been suggested that these representations can be updated via

conditioning in the same way as with exact probabilities by making use

of interval arithmetic. However, it has been shown in this paper that

there are a number of di�culties with doing so. Each update on such a

representation looses information. The loss is not due to any particular

conditioning rule, but occurs from a lack of representational power in the



20

lower probability representation. With such a representation, the results of

inference depend on what order evidence is incorporated, and on whether

evidence is incorporated incrementally or all at once.

Computational considerations also present problems for the straight lower

probability representation. It is not convenient to update the M�obius trans-

forms of lower probability functions directly, and these representations can-

not take advantage of sparsity (the case where the number of M�obius as-

signments de�ning the functions are small compared to the size of the

domain). In fact, it was shown that the number of focal elements in a

straight lower probability representation can increase exponentially when

evidence is incorporated.

To rectify these problems, an alternative representation for lower prob-

ability was introduced. Rather than store the lower probability function

directly, the new representation is composed of four di�erent items, from

which the lower probability of any set can be computed. Interestingly, one

of these items is the function computed from Dempster's Rule of Condi-

tioning, highlighting a new relationship between evidential reasoning and

lower probability | namely, that Dempster's rule contains some, but not

all, of the information needed to track lower probability.

Unlike with the straight lower probability representation, it is very con-

venient to directly update the M�obius transform of the new representation.

The new representation does not experience the exponential growth with

updates seen with the straight lower probability representation | in fact,

the number of constraints (focal elements) actually gets smaller as more

evidence is obtained. Furthermore, the new representation does not loose

any information that is relevant for computing probability bounds. The

same bounds are obtained regardless of what order evidence is incorpo-

rated, and regardless of whether updates are done incrementally or all at

once.

The bene�ts and convenience of the new representation may be very

helpful to anyone wishing to compute lower and upper probabilities. There

are a number areas for future research. We have only considered one form

of probabilistic inference in this document: conditioning. Other forms, for

example Je�rey's Rule, are possible ([7]) and we are currently experiment-

ing with the use of similar rules on the new representation. It would also

be interesting to further extend to connection between Dempster-Shafer

theory and lower probabilities. In particular, since Dempster's Rule of

Conditioning is actually a special case of Dempster's Rule of Combination,

it would be interesting if a generalized rule of combination on the new

representation could identi�ed, and it would be interesting to examine if

such a rule could enable a theory of statistical evidence in the spirit of [40,

Chapter 9]. Finally, it would be very useful if methods for modularizing

the new representation were developed, for example, in the spirit of [43],

[45], and [3], and to develop local propagation methods as has been done



21

for convex sets of probabilities in [4]. Such modularizations would be very

signi�cant, especially since they do not appear easy to come by.
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