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Abstract

Most arti�cial intelligence applications must cope with uncertainty. Recent developments with graphical

probabilistic models such as Bayesian networks have introduced useful methods for reasoning explicitly

about degrees of uncertainty. This thesis explores a method called iterative dynamic discretization for ap-

proximating probabilistic inference in graphical networks. Continuous variables (or variables with enormous

sample spaces) are replaced by discrete variables with a small number of possible values, and then the sim-

pli�ed discrete model is solved using exact propagation methods. The results of this computation are then

used to �nd an improved discretization for the problem instance, and the process is iterated. The algorithm

can be viewed as applying Gibbs sampling to the space of possible discretizations, obtaining a method for

combining stochastic simulation methods with exact propagation. Alternatively, it can be viewed as an

instance of approximate iterative knowledge-based model construction.

The thesis applies iterative dynamic discretization to a model-based time-series segmentation problem. A

formalism for modeling qualitative signal shapes, durations, transitions, and uncertainty in multi-dimensional

time series, called a Hidden Segmented Semi-Markov Model, is introduced and used to de�ne a probabilistic

model for the time-series segmentation task. This is converted to a graphical probabilistic model and solved

by iterative dynamic discretization. Iterative dynamic discretization is found to require substantially fewer

iterations to obtain a given level of performance compared to Gibbs sampling.

Thesis Committee: Reid Simmons (advisor), Tom Mitchell (advisor), Matthew Mason, Padhraic Smyth.

Keywords: Iterative Dynamic Discretization, Model-based Time-Series Segmentation, approximation of

graphical probabilistic models, continuous variables in probabilistic models, discretization of contin-

uous variables, Bayesian networks, Markov �elds, Gibbs sampling, focused Gibbs sampling, exact

propagation, clique-marginal propagation, combinations of Gibbs sampling and exact propagation,

knowledge-based model construction, Hidden Segmented Semi-Markov Models (HSSMMs), Hidden
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Chapter 1

Introduction

Most arti�cial intelligence applications are riddled with uncertainty. Information about the world state is

generally incomplete, gaps exist in domain knowledge, sensors are noisy, and information sources are often

unreliable. Indeed, many of the technologies that have emerged from Arti�cial Intelligence research can

be viewed as alternative approaches for dealing with this ubiquitous uncertainty. Examples include ma-

chine learning algorithms, nonmonotonic reasoning formalisms, fuzzy logic, pattern recognition techniques,

heuristic search, and others. Probabilistic and decision-theoretic techniques attempt to deal with uncer-

tainty by modeling and reasoning about degrees of uncertainty explicitly. This thesis explores some aspects

of probabilistic inference.

1.1 Thesis Overview

This thesis studies and develops algorithms for probabilistic inference by attacking a speci�c and challenging

application problem: model-based time-series segmentation. Chapter 2 introduces a modeling formalism for

expressing knowledge about time series. This formalism is called a Hidden Segmented Semi-Markov Model

(HSSMM) and allows qualitative information about raw signal shapes to be expressed along with quantitative

information about durations and explicit measures of uncertainty. The model also naturally accommodates

multiple sensor streams. A HSSMM implicitly de�nes a prior probability distribution over the space of

possible segmentations given a data stream. The segmentation task is to �nd the optimal segmentation |

i.e., the segmentation with the maximum a posterior (MAP) probability given the time-series model and

the time-series data. For this motivating application, �nding a MAP con�guration is the basic problem to

be solved.

The HSSMM is a convenient and expressive modeling formalism from a user's perspective, but the

associated optimization problem can be a formidable computational challenge. This creates an interesting

domain for experimenting with sophisticated probabilistic inference techniques.

To obtain a solution to the computational challenge, Chapter 3 decomposes the huge optimization prob-

lem into a collection of much smaller optimization problems. The decomposition is based on probabilistic

conditional independence and has foundations in recent work on graphical probabilistic models and Markov

�eld theory. I refer to this process as structural decomposition. The techniques reduce, e.g., a 200-dimensional

optimization problem into 200 three-dimensional optimization problems, thus enabling substantial bene�t

from leveraging existing structure. Furthermore, the decomposition is information-preserving, i.e., even

though the computation challenge is substantially simpli�ed, the answer to the decomposed problem is still

an exact solution to the original problem.

Chapter 3 emphasizes the generality of decomposition and associated techniques. Although these tech-

niques are not new to this thesis, casting the problem in terms of these ideas provides several advantages.

First, it establishes a clear connection between the work in this thesis and contemporary conceptions of

probabilistic inference. It also introduces a 
exibility that would not be obtained if an algorithm to solve

the HSSMM-based segmentation problem were simply described. Almost inevitably, any future application

of the HSSMM formalism will �nd extensions of one form or another necessary. While it is impossible to

1
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Figure 1.1: On the left is the performance of Gibbs sampling averaged over ten runs as a function of total

iterations. On the right is the performance of a certain variant of iterative dynamic discretization on the

same problem, also averaged over ten runs. Note that the x-axes are scaled di�erently. These experiments

are described in Chapter 4.

predict in advance what these would be, the same process of structural decomposition can once again be

applied in an almost mechanical fashion to support whatever extensions arise in the future. Finally, these

techniques are more broadly applicable to other problems.

Structural decomposition simpli�es the computational problem tremendously, but for the time-series

segmentation problem, the simpli�cation is not su�cient to obtain a computationally feasible algorithm. This

is due to the fact that the variables in the problem are continuous (i.e., real-valued) and the distributions lack

convenient conjugacy properties. For this hurdle, I turn to approximate techniques based on discretization.

Chapter 4 introduces iterative dynamic discretization in which continuous variables in a model are re-

placed with discrete variables taking on a small �nite number of possible values. The resulting decomposed

�nite models can be solved using exact methods, but the answer obtained (i.e., the segmentation found) is

only optimal relative to the discretization. It may not be optimal for the original continuous model. Thus,

it is important to �nd good discretizations.

Choosing a good discretization is a hard problem. A good discretization is one whose optimum is nearly

optimal for the original continuous problem. It would be unreasonable to assume that this can be done well

on the �rst attempt, so instead, the whole process is iterated. The important idea is:

Information learned by solving a problem using the current discretized model is utilized for choos-

ing the next discretization of the original model.

It is the central thesis of this thesis that this can be done e�ectively.

This iterative process strives to improve the discretization on any given iteration. Besides being iterative,

the process is also dynamic in that information about the current problem instance (including the currently

observed sensor streams) have an important in
uence on the choice of discretization.

Iterative dynamic discretization is obviously an approximation technique, and the exploration of the

algorithm in this thesis is largely empirical. Chapter 4 demonstrates that the algorithm can �nd good

solutions in orders of magnitude fewer iterations than Gibbs sampling, a competing approximation technique

(see Figure 1.1). An evolving implementation and experimentation with the algorithm has molded the

algorithm into its current form. While it is a novel algorithm, it is closely connected to many di�erent

existing approximate techniques for probabilistic inference, from Gibbs sampling to knowledge-based model

construction. These many connections create several perspectives on the contributions of this thesis.

The remainder of the introduction chapter reviews many of the basic foundations of probabilistic inference

and existing techniques, and outlines where this work �ts and the contributions it makes.
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stain-pos stain-neg

react-pos react-neg react-pos react-neg

male benign 0.0144 0.0336 0.0576 0.1344

malignant 0.1620 0.1620 0.0180 0.0180

female benign 0.0168 0.0392 0.0672 0.1568

malignant 0.0540 0.0540 0.0060 0.0060

Figure 1.2: A doctor's prior degrees of belief.

1.2 Probabilistic Inference

� A meteorologist says, \There is a 60% chance of rain tomorrow."

� A doctor tells a patient, \There is a 30% chance your tumor is malignant."

� An expert system reports that there is a 0.25 probability of a large oil deposit at a certain location.

� A mission control operator reports, \the water spray boiler is probably frozen, and if so, the primary

auxiliary power unit is unlikely to start for reentry without further intervention."

� My car's idling problem is most likely due to a faulty oxygen sensor.

� As the phone rings, Joe says, \that is probably my wife calling."

Probabilistic inferences abound in everyday life. All the statements above explicitly express a degree

of belief or uncertainty, and all these estimates are somehow based on a deeper or more general knowledge

tailored to the particular situation. The methods behind such inferences are of great interest to arti�cial intel-

ligence researchers and practitioners, both because they are so common in naturally occurring applications,

and because explicitly reasoning about uncertainty can improve the robustness and quality of intelligent

systems.

Bayesian probability theory provides one well-studied formalism for describing inferences of this nature.

The basic idea is that an agent has a store of background prior knowledge (or an appropriate prior model),

and the agent derives inferences such as the above by combining this information with observations speci�c to

the current situation. An agent's prior background knowledge encodes a mutually exclusive and exhaustive

set of all possible situations (called the frame of discernment or sample space), and a relative degree of belief

for each situation. Observations serve to narrow the possibilities while preserving relative degrees of belief,

thus providing a clear and precise basis for manipulating and reasoning about degrees of uncertainty.

For example, a doctor may model a situation in the following way. A tumor is either malignant or benign,

and stain and reaction tests on a biopsy may come out either positive or negative. Furthermore, a patient is

either male or female. This creates 16 possible situations. The �rst important part of the doctor's model is

that these 16 situations are the only ones possible. Note that this model already assumes a tumor actually

exists, etc.

For the second part of the model, the doctor assigns relative likelihoods to each of these joint sit-

uations. The table in Figure 1.2 shows a possible assignment of probabilities. Now, knowing the pa-

tient to be male and �nding the stain test result to be positive, the doctor can narrow the possibilities

to four: hmale; benign; stain-pos; react-posi, hmale; benign; stain-pos; react-negi, hmale;malignant; stain-

pos; react-posi, and hmale;malignant; stain-pos; react-negi. The doctor thus infers that the odds are

0:1620 + 0:1620 : 0:0144 + 0:0336 = 324 : 48 that the tumor is malignant, or stated in terms of proba-

bilities, that there is an 87% chance that the tumor is malignant. The probability after the evidence is

incorporated is the posterior probability.

This style of reasoning is the basic foundation of Bayesian probabilistic inference. The simplicity of this

style of inference makes the technique very attractive as a computational tool, but it also highlights a few

of the fundamental limitations.

The Bayesian probabilistic formalism has the following fundamental limiting factors:
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� The situations identi�ed by a model must be exhaustive and mutually exclusive.

� If a probability is to be assigned to a proposition, or if any evidence is observed, the proposition or

evidence must be expressed as a subset of the possible situations delineated/discerned by the model.

� The numbers (the prior) must come from somewhere.

Of these, the �rst two are unarguably the most limiting, but it is hard to see how any computational

framework would avoid the same (or analogous) fundamental limitations. The ability to discern situations,

and the exhaustiveness of a model, are both enhanced by using larger models, i.e., models that allow for a

greater number of possible situations. The nature of arti�cial intelligence applications makes models with

enormous numbers of possibilities of great interest, and many techniques are aimed at such situations. The

third limitation, the origin of the prior, and even the nature of the prior, are the topic of great debate

throughout the literature, and the source for many divergent philosophies.

Many adherents of the Bayesian methodology feel that reasonable priors are not too di�cult to come by

in many applications, and that reasonable priors (even if not incredibly precise) usually lead to reasonable

posteriors (

[

Pradhan et al., 1995

]

). It is also common to use noninformative priors when little relevant

knowledge is available. An example is to assign all possible situations the same probability. The term

\noninformative" is a great misnomer since the set of possible situations that a model identi�es encodes

much about relative probabilities even when the numerical assignments are supposedly noninformative.

Nevertheless, it is generally accepted that the numerical assignments do allow one to easily vary the degree

of speci�city or di�useness of knowledge, so that some pragmatic application of noninformative priors is

sometimes reasonable.

Modern usage of the term probabilistic inference generally refers to a situation such as that described here,

with the important point being that inferences are made from a prior. The term statistical inference is used

more generally to include activities such as hypothesis testing, regression, maximum likelihood estimation,

etc.

1.3 Historical Perspective

Probabilistic and decision-theoretic approaches were among the earliest to receive attention by arti�cial

intelligence researchers (

[

Simon, 1952b

]

,

[

Simon, 1952a

]

,

[

Simon, 1955

]

,

[

Peirce, 1956

]

,

[

Warner et al., 1961

]

).

These techniques explicitly and quantitatively model degrees of uncertainty, and o�er (at least in theory)

many advantages and enable many capabilities. However, researchers quickly recognized the intractability

of the techniques, and also to some extent representational limitations, and largely became disenchanted

with such approaches (

[

Simon, 1955

]

,

[

Gorry and Barnett, 1968

]

,

[

McCarthy and Hayes, 1969

]

,

[

Szolovits

and Pauker, 1978

]

). As a result, the arti�cial intelligence �eld saw a very limited use of probabilistic

techniques during the 1960's and 1970's. However, during this time, a small number of A.I. researchers

and practitioners did continue to use and propound the advantages of probabilistic techniques (

[

Minsky

and Selfridge, 1961, Nilsson, 1965, Wallace and Boulton, 1968, Gorry and Barnett, 1968, Ginsberg, 1969,

Munson, 1971, de Dombal et al., 1972, Duda and Hart, 1973, Gorry et al., 1973, Jacobs and Kiefer, 1973,

Feldman and Yakimovsky, 1974, Coles et al., 1975, Shortli�e and Buchanan, 1975, Shortli�e, 1976, Duda et

al., 1976, Good, 1977, Feldman and Sproull, 1977, Cheeseman, 1985

]

).

The sentiment towards probabilistic techniques in A.I. turned around in the 1980's and techniques that

explicitly represent uncertainty continue to be a very integral part of mainstream A.I. in the 1990's. There

are many reasons for the revitalization of interest in probabilistic techniques, one of the most important being

the discovery and maturation of graphical probabilistic modeling formalisms. Among these, the directed

graphical representation, referred to by various names including Bayesian network, belief network, in
uence

diagram, directed Markov �eld, recursive graphical model, probabilistic causal network, and directed inference

network, is perhaps the best known.

Graphical probabilistic models date as far back as the work of Sewall Wright in the 1920's (

[

Wright,

1921

]

,

[

Wright, 1934

]

), but went entirely unrecognized for many decades. They were largely reinvented in

the �elds of decision analysis and statistics during the 1970's and early 1980's (

[

Good, 1961

]

,

[

Howard, 1968

]

,

[

Howard, 1970

]

,

[

Miller et al., 1976

]

,

[

Speed, 1979

]

,

[

Dawid, 1979

]

,

[

Dawid, 1980

]

,

[

Howard and Matheson,



1.4. GRAPHICAL PROBABILISTIC MODELS 5

1984a

]

,

[

Lauritzen, 1982

]

,

[

Kiiveri et al., 1984

]

,

[

Lauritzen et al., 1984

]

), and partially by researchers in

Arti�cial Intelligence in the late 1970's (

[

Shortli�e and Buchanan, 1975

]

,

[

Shortli�e, 1976

]

,

[

Duda et al.,

1976

]

). The most notable progenitor of A.I.'s modern Bayesian network was the PROSPECTOR system

(

[

Duda et al., 1976

]

), which used a directed graph representation based on conditional probabilities to encode

knowledge and make inferences in a manner similar to rule-based systems. These works utilized the graphical

representation primarily as a method for conveniently representing, assessing, and modularizing probabilistic

knowledge.

In the 1980's, a new idea emerged: That the graphical structure of probabilistic knowledge can also

\structure" computation and thereby allow probabilistic and decision-theoretic problems to be solved e�-

ciently. The idea again dates back to the PROSPECTOR (

[

Duda et al., 1976

]

) and MYCIN (

[

Shortli�e and

Buchanan, 1975

]

,

[

Shortli�e, 1976

]

) systems where attempts were made to chain together probabilistic rules

in a fashion similar to the way in which logical rules in a rule-based system are chained together during

inference. These early systems did not always adhere to the principles of probability theory and experienced

some problems as a result (

[

Horvitz and Heckerman, 1986

]

,

[

Heckerman and Horvitz, 1988

]

). Judea Pearl in-

troduced a clean and well-founded Bayes message-passing scheme for directed poly-trees in

[

Pearl, 1982

]

and

initiated the modern conception of using conditional independence-based structure to organize computation.

Further advancements extended these propagation algorithms to more general structures (

[

Spiegelhalter,

1986

]

,

[

Pearl, 1986b

]

,

[

Shachter, 1986

]

,

[

Lauritzen and Spiegelhalter, 1988

]

,

[

Pearl, 1988

]

,

[

Andersen et al.,

1989

]

,

[

Lauritzen and Wermuth, 1989

]

,

[

Shenoy and Shafer, 1990

]

,

[

Jensen et al., 1990b

]

,

[

Jensen et al.,

1990a

]

). These advancements addressed the earlier sentiment regarding the intractability of probabilistic

and decision-theoretic techniques, and has resulted in a renewal of interest in applying probabilistic ap-

proaches to problems of interest within Arti�cial Intelligence.

Graphical decompositions of probabilistic knowledge can be leveraged in order to achieve computational

e�ciency in many applications, often meaning the di�erence between a feasible implementation and absolute

hopeless intractability. However in general, most interesting inference problems with graphical probabilistic

models are known to be NP-hard (

[

Rosenthal, 1975

]

,

[

Cooper, 1987

]

,

[

Cooper, 1990b

]

,

[

Verma and Pearl,

1993

]

,

[

Shimony, 1994

]

), even if the answer is only to be approximated (

[

Dagum and Luby, 1993

]

). The

actual complexity of a given problem generally depends on the precise graphical structure of the probabilistic

knowledge. Graphical decomposition can signi�cantly simplify a problem of probabilistic inference, but it is

not always, by itself, enough.

1.4 Graphical Probabilistic Models

Once we become concerned with large models, the structure of knowledge becomes critical, and typically the

dominant concern in one form or another. In fact,

[

Shafer and Pearl, 1990, Page 3

]

state \that probability

theory is more fundamentally concerned with the structure of reasoning and causation than with numbers."

The model in Figure 1.2 does not indicate any explicit structure | there is simply a single number attached

to each possible situation. This kind of explicit enumeration of situations clearly does not scale reasonably

with the number of variables that de�ne the possible situations.

Bayesian networks and other graphical models are now commonplace in arti�cial intelligence. The space

of possible situations are described by a �nite set of variables, fx

1

; ::;x

n

g. Each variable has a set of possible

values, 


x

i

, and thus the space of possible situations is 
 = 


x

1

� ::�


x

n

. If 
 is �nite, then F = 2




is the

space of possible events (an event is a set of situations). In the above example, there are four binary variables

leading to 16 possible situations. An assignment of a value to every variable is called a joint con�guration, or

just con�guration, a term I will use repeatedly throughout this thesis. The space of possible con�gurations

is the cross product of the space of values each variable can take on. Events such as observations and the

propositions of interest are typically expressed as instantiations of variables in the model.

A graphical probabilistic model consists of a graph, G = (V; E), whose nodes, V = fx

1

; ::;x

n

g, are the

variables of a model and whose edges, E � V � V, represent dependencies. Also included in the model are

collections of local probability assignments, whose form depends on the type of graphical model.
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p(male) = 0:6

p(female) = 0:4

p(benignjmale) = 0:4 p(malignantjmale) = 0:6

p(benignjfemale) = 0:7 p(malignantjfemale) = 0:3

p(stain = posjbenign) = 0:2

p(stain = posjmalignant) = 0:9

p(react = posjbenign) = 0:3

p(react = posjmalignant) = 0:5

Figure 1.3: A Bayesian Network.

1.4.1 Bayesian Networks

The most popular graphical probabilistic model is the Bayesian network, in which the graph is a directed

acyclic graph and the local probability assignments consist of a probability table at each node conditioned

on the node's parents. Let pa(x

i

) be the parents of a node x

i

in the graph, pa(x

i

) � V. The probability

table at each node is denoted p(x

i

jpa(x

i

)). The example from Figure 1.2 can be expressed as the Bayesian

network shown in Figure 1.3.

The probability of every joint con�guration is encoded in a Bayesian network as the product of all

conditional probabilities corresponding to the con�guration, i.e.,

p(x

1

; ::;x

n

) =

n

Y

i=1

p(x

i

jpa(x

i

)) (1.1)

For nodes with no parents, p(x

i

) is used in this product. For example, in Figure 1.3,

p(male; benign; stain-pos; react-pos) = p(male)p(benignjmale)p(stain-posjbenign)p(react-posjbenign)

= (0:6)(0:4)(0:2)(0:3) = 0:0144

Thus, the Bayesian network implicitly encodes the joint probability of every possible con�guration. With the

standard procedure for Bayesian updating, this completely de�nes the semantics of a Bayesian network |

it is a distribution over a space of joint con�guration speci�ed as a product of probability tables.

For any event A 2 F , the probability of A (assuming 
 to be �nite) is simply the sum of all con�gurations

consistent with A, i.e.,

p(A) =

X

x2A

p(x)

Note that x here is a joint con�guration. The statement \x

3

= v" speci�es the event A = 


1

� 


2

� fvg �




3

� ::� 


n

. A marginal distribution is simply the distribution over events involving a single variable, and

is therefore obtained by \summing out" all other variables in a model. It is customary to write p(x

1

) to

denote the marginal of p to all events on F

x

1

. Similarly, marginals may involve two or more variables, and

one writes simply p(x

1

;x

2

), etc., for the distribution marginalized to events involving only x

1

and x

2

.

If A and B are two events, the conditional probability of A given B, de�ned when p(B) > 0, is

p(AjB) =

p(A \B)

p(B)

(1.2)

This is the probability obtained by zeroing out the probability of all events inconsistent with B while

maintaining relative probabilities of events consistent with B (of course, ensuring that p(
) = 1). In a
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Bayesian network, if a conditional probability appearing in a node's table is de�ned, it is easy to see that

the value in the table always agrees with the conditional probability obtained from (1.2). This is a direct

consequence of the acyclicity of the graph.

Probabilistic conditional independence plays a very important role in the study and use of graphical

probabilistic models. A variable x

1

is conditionally independent of a variable x

2

given an event A 2 F when

p(x

1

jx

2

; A) = p(x

1

jA) for all x

1

2 F

1

and x

2

2 


2

. Equivalently, p(x

1

; x

2

jA) = p(x

1

jA)p(x

2

jA). It is said

that x

1

is simply independent of x

2

when this holds for the event A = 
. Note that p(�j
) = p(�).

Independence relationships do not de�ne the Bayesian network, but they do fall out as a result of the

de�nition. These are often referred to as Markov properties. For example, the local Markov property states

that a variable is independent of all nondescendants given an assignment to its parents. The (directed) global

Markov property

1

[

Lauritzen et al., 1990

]

(equivalently, d-separation

[

Pearl, 1988

]

) describes the more general

set of conditional independence relationships shared by all distributions consistent with a given graphical

structure. See

[

Lauritzen et al., 1990, Frydenberg, 1990

]

.

The directions of arrows in a Bayesian network do not imply causality; however, there is much interest in

Bayesian networks with arrows that do correspond to causality. It is often useful to interpret each variable

as being a stochastic function of its parents. Such an interpretation often allows one to write down directed

dependencies directly for an application. These topics are discussed in more depth in Chapter 3.

There are many good introductions to Bayesian networks including

[

Heckerman and Horvitz, 1988,

Pearl, 1988, Charniak, 1991, Henrion et al., 1991, Jensen, 1993

]

.

1.4.2 Undirected Networks (Markov Fields)

A second common graphical model is known as a Markov Field, Markov Network, Gibbs System, etc., and

utilizes an undirected dependency graph. In an undirected graph, the edge (x

i

;x

j

) is in E exactly when

(x

j

;x

i

) 2 E , and self-loops are not allowed (i.e., (x

i

;x

i

) 62 E). The basic properties underlying undirected

graphical models are in many ways at the heart of nearly all graphical probabilistic models.

As with the Bayesian network, the global probability distribution is an implicit function of many local ta-

bles associated with the network. Unlike the Bayesian network, these tables are not comprised of conditional

probabilities, and indeed, the entries might not even be probabilities, at least not initially. Each table is

associated with a totally-connected

2

subset of variables and speci�es a potential value for each combination

of joint assignments the variables can take on. A maximal totally-connected subset of variables is called a

clique, and limiting tables only to cliques is equally general. The joint probability of a full con�guration is

the (normalized) product of the corresponding entry from each table. A normalization may be necessary

since the products might not sum to 1.

In general, it is di�cult to interpret the numbers in individual tables in an undirected graph. Only the

product of the tables is interpreted as a distribution

3

. Also, some care must be taken to ensure that at least

one joint assignment is assigned a nonzero probability or one ends up with consistency problems. Because

of these considerations, it is usually inconvenient to specify knowledge directly in terms of an undirected

graph. However, because of the great generality | i.e., the joint probability must simply be expressed in

product form| the undirected graph is generally the most useful of the graphical probabilistic models when

knowledge is expressed in some application-speci�c form, but where graphical models are to be exploited

later for computation, interpretation, etc. This is more or less the case in this thesis.

1

The directed global Markov property is slightly more complicated to state, and so it not explained in the text at this point.

It states that two sets of variables in a directed graph are conditionally independent given a third set of variables when the third

set separates the two sets in the (undirected)moralized ancestrial subgraph. The moralized ancestrial subgraph is obtained by

deleting all nodes from the original graph that have no descendants in one of the three sets (the ancestrial graph), connecting

any two nodes with a common child node (moralizing = \marrying parents"), and dropping the direction of edges.

2

The Hammersley-Cli�ord theorem shows that assignments to totally-connected subsets of variables is the most general

representation that results in a consistent probability distribution when the distribution is everywhere positive

[

Besag, 1974

]

.

Although the same is not quite true when there are zeros (

[

Moussouris, 1974

]

), assignments to complete subsets are generally

used in general (

[

Pearl, 1988, Lauritzen and Spiegelhalter, 1988

]

).

3

Unless the tables agree on all possible marginals, in which case the tables are said to be consistent and the tables then

correspond to the marginals for those variables

[

Dawid and Lauritzen, 1993

]

.



1.5. EXACT SOLUTION TECHNIQUES 8

Conditional independence relations that hold for all distributions expressible as a given graph can be

easily read o� an undirected graph. Two sets of variables are conditionally independent given a third when

all paths from one set to the other passes through the given (third) set of variables in the graph. This is

called the global Markov property. For example, any variable is independent of all other variables given its

immediate neighbors. This is called the local Markov property.

Equation 1.1, which de�nes the joint distribution of a Bayesian network, is in a product form; therefore,

knowledge expressed as a Bayesian network can quickly be mapped onto an undirected graphical model. The

undirected graph is obtained by connecting (\marrying") all nodes with a common child in the directed graph

and then removing the directions of all arrows. The corresponding undirected graph has one table per node,

with each table involving only the node and the nodes that were its parents in the original directed graph;

however, any tables appearing on a common clique can be combined (multiplied together) and assigned to

the clique. Such a graph is called the moralized graph of the Bayesian network. Since the distribution is

unchanged by moralization, no new independence assertions are introduced from this operation. Algorithms

developed for undirected graphs can thus be applied to solve Bayesian networks by applying them to the

moralized graph (

[

Lauritzen and Spiegelhalter, 1988

]

).

1.4.3 Perspective

Much existing work on graphical probabilistic models treats the graphical model as the primary knowledge

representation language. It is a language a knowledge engineer might use directly to encode domain knowl-

edge for an application. Used in this way, it is not surprising that many �nd the Bayesian network a much

more attractive formalism than the undirected network since the probabilities are easy to interpret, etc.

Although graphical probabilistic models often function well as a primary knowledge representation lan-

guage, this use barely scratches the surface of their potential applicability. In most of the applications I

have personally encountered, a standard Bayesian network has not matched the form of knowledge that is

natural for the problem, or it was de�cient in other respects. For example, in the time-series segmentation

task discussed later it is natural allow for an arbitrary horizon, which could not be represented as a Bayesian

network unless one had an in�nite number of nodes. Furthermore, the time-homogenous structure of the

model would not be made explicit in a Bayesian network, therefore making other modeling approaches more

appropriate. However, graphical structure is ubiquitous, often arising when application-speci�c knowledge

(in other forms) is brought to bear on a particular task. The techniques already in existence for graphical

models often provides immediate solutions to these types of problems that arise in practice. One encodes

knowledge in a domain speci�c formalism, and then by recognizing graphical structure, utilizes these tools

obtain e�cient algorithms. In this way, graphical models and the supporting theory can provide compu-

tation tools even if they do not provide the natural representation for expressing domain knowledge. The

time-series application in this thesis certain demonstrates this point.

In contrast to much existing literature, it is this latter use I greatly emphasize in this thesis, particularly

in Chapter 3. For me, graphical models are not as much primary knowledge representation formalisms as

they are extremely useful and widely applicable computational tools.

1.5 Exact Solution Techniques

As mentioned in Section 1.3, much of the current interest in graphical probabilistic models is due to the fact

that algorithms can take advantage of the graphical structure for computational e�ciency.

1.5.1 What can be computed?

A common probabilistic inference task is to compute the marginal probability on a variable given some value

assignment to a subset of other variables.

Another common task is to �nd the maximum a posteriori (MAP) con�guration given assignments to

some of the variables.

These two tasks cover a huge space of problems that arise in probabilistic inference applications, including

those that appear in this thesis.
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There are other possible inference tasks that are not touched by this thesis. For example, if one has a

causal graph in the form of a Bayesian network (remember, not all Bayesian networks are causal), one might

ask what would happen to the probability at y if an exogenous force suddenly made x true (

[

Pearl, 1994,

Pearl, 1995b, Pearl, 1995a, Pearl, 1996

]

). One should realize that this is not the same task as computing

the conditional probability p(yjx), which describes what to expect of y when x happens to be true, which

is what the marginal posterior distribution describes. Another task is to �nd an optimal course of action

relative to some utility model. This is the realm of in
uence diagrams (

[

Howard and Matheson, 1984a,

Shachter, 1986

]

), and is not discussed here. However, many of the same ideas for solving networks readily

transfer to in
uence diagrams (

[

Shenoy, 1992, Jensen et al., 1994

]

).

1.5.2 Existing Algorithms

In

[

Lauritzen and Spiegelhalter, 1988

]

, an algorithm for exact computation on graphical models is intro-

duced. The algorithm computes probabilities by propagating potentials on a secondary undirected graphical

structure, which has subsequently become known as the junction tree. The junction tree is compiled from

the original graph through a process of moralization and triangulation. These graph theoretic concepts

are explained in Section 3.1.

[

Jensen et al., 1990a

]

extends the algorithm to gracefully incorporate multi-

ple observations at once, and the result is often referred to as Jensen's algorithm or the Hugin algorithm.

Furthermore,

[

Dawid, 1992

]

shows that the same basic algorithm can be applied to �nd the MAP con�gura-

tion. Currently, this propagation algorithm is state-of-the-art and the most popular algorithm in use. The

propagation approach is detailed in Chapter 3.

A second method for solving graphical networks is the node-removal algorithm of

[

Shachter, 1986,

Shachter, 1990

]

. This algorithm performs a series of arc reversals and node removals until a single node

remains, at which point the marginal probability of interest can be read o�.

A third exact solutionmethod is the cutset-conditioning algorithm(

[

Pearl, 1986a

]

,

[

Pearl, 1988, Pages 204{

210

]

,

[

Zhang and Poole, 1992

]

,

[

Becker and Geiger, 1994

]

,

[

Darwiche, 1995

]

,

[

D��ez, to appear

]

,

[

Suermondt

and Cooper, 1990

]

,

[

Peot and Shachter, 1991

]

). This algorithm locates a subset of variables that breaks all

undirected loops. When these variables are clamped to a given value, the subgraph of the remaining nodes

is a poly-tree, so that the e�cient poly-tree algorithm of

[

Pearl, 1986b, Pearl, 1988

]

can be applied to solve

the subproblem. This procedure must be repeated for every possible assignment of the cutset variables, and

the results are then averaged appropriately.

A fourth method solves marginals symbolically by explicitly manipulating the symbolic summations that

de�ne marginals and simplifying the expressions by utilizing conditional independence relationships (

[

Chang

and Fung, 1991, Shachter et al., 1990, D'Ambrosio, 1990, D'Ambrosio, 1994, Castillo et al., 1995a

]

).

There are, of course, minor variations to all these approaches.

What is somewhat surprising is that all of these exact approaches are essentially equivalent. Each

algorithm can be seen as peeling o� one variable at a time. This is fairly obvious in the case of node removal

algorithms, and not too hard to see for the symbolic algorithms (see also

[

Lauritzen and Spiegelhalter, 1988,

Comments by W. S. Kendall

]

). The clique-tree approach utilizes a triangulation as the basis for propagation.

A well-known result (

[

Golumbic, 1980

]

) is that a graph is triangulated exactly when there is a node ordering

in which the nodes can be removed one at a time, such that whenever a node is removed, the remaining

neighbors of that node are totally connected. Thus, a triangulation is equivalent to a node-peeling order,

so the equivalence is reasonably clear. The equivalence of cutset-conditioning is nontrivial to see, but is

described nicely in

[

Shachter et al., 1991, Shachter et al., 1994

]

. Essentially, the use of a cutset is equivalent

to a triangulation obtained by connecting each cutset variable to every other variable in the network

4

.

Since only some of the possible triangulations can be obtained in this fashion, and since this can result in

unnecessary edges being added, the cutset-conditioning methods are always inferior to the clique-marginal

propagation approach.

In short, although many algorithms have been devised, they all seem to be equivalent to, or at least

special cases of, the clique-tree propagation algorithm(s). These propagation algorithms are very general,

very useful, and relatively easy to understand. They are covered in detail in Chapter 3.

4

Recent terminology calls this global (cutset) conditioning. Local cutset conditioning methods (

[

D��ez, to appear

]

) connect

cutset variables to subsets of nodes, but the same type of transformation to clique trees still applies.
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In addition to exact solution techniques, there are many approximation algorithms for tasks involving

graphical networks. Some of these are reviewed in Section 1.8.

1.6 Real-Valued Variables

Parametric Representations

When each variable in a network is discrete with only a �nite number of possible values, it is possible to use

a nonparametric representation for the probabilities or potentials. In other words, we can store a separate

probability for each possible value of the variables. When a variable can take on an in�nite number of

possible values, an explicit enumeration of probabilities is no longer possible, and it becomes necessary to

turn to parametric representations.

A parametric representation de�nes a family of distributions, where the distributions within the family are

indexed by a small number of parameters. For example, the Bernoulli distribution on the positive integers,

p(x) =

�

n

x

�

q

x

(1� q)

n�x

, is de�ned by the two parameters n 2 Z

+

, q 2 [0; 1]. Instead of having to store

a probability for every possible value of x, one needs to only store n and q to recall the entire distribution.

Densities

On uncountable spaces, the probability density function (rather than the probability) is generally parame-

terized. The reader not familiar with general probability theory (i.e., on uncountable sample spaces) may

�nd a text on the topic such as

[

Billingsley, 1986

]

useful; however, the reader should �nd most of this thesis

understandable with only a basic understanding of concepts such as conditional distributions (densities) and

integration (i.e., of densities to obtain distributions). An example of a parametric family on <

n

are the

multi-variate Gaussian distributions, parameterized by a 1� n vector � and the n� n covariance matrix �,

with density given by (here x is a 1� n vector):

p(x) =

1

p

2�j�j

e

�

1

2

(x��)�

�1

(x��)

T

On uncountable (e.g., real-valued) sample spaces, the probability density is used where the probability

is used with countable or �nite sample spaces. For example, for a distribution represented on an undirected

graphical network, the density must be expressed in a product form, and the result of propagation is a

marginal density (in parametric form, of course).

Conjugacy

Parametric representations introduce an extra complication for graphical network representations: A conju-

gacy requirement. A family of distributions is conjugate if when any distribution from the family is updated

after evidence is observed, the resulting posterior distribution is a member of the same family. Exact solution

methods for graphical networks require an even stronger form of conjugacy: if information is propagated

between nodes in the graph, an updated local density function after each individual propagation step must

still belong to the same local parametric family (Section 3.2.5).

Gaussian distributions possess these conjugacy properties. When a network of real-value nodes is used

to encode an n-dimensional Gaussian distribution (n is the number of variables), one can view the network

structure as constraining certain covariances to be zero. Propagation methods for Gaussian networks are

given in

[

Shachter and Kenley, 1989, Andersen et al., 1993, Chang and Fung, 1991, Lauritzen, 1992, Geiger

and Heckerman, 1994b

]

.

A CG-distribution is a hybrid of a Gaussian distribution and a discrete distribution involving both real-

valued and discrete variables. For any assignment to all discrete values, the distribution on the remaining

continuous variables is Gaussian. The CG-distribution is also conjugate and propagation algorithms on

graphical networks have been developed

[

Lauritzen and Wermuth, 1989, Olesen, 1993

]

.

The network conjugacy requirement can be quite limiting. Many applications require distributions that

do not belong to a simple conjugate parametric family. These may still have a product form and therefore
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be representable using a graphical network, but exact methods cannot be applied to solve such cases. The

time-series segmentation problem studied in this thesis is such a case.

Various approximation algorithms can be applied to solve certain tasks even when a conjugacy require-

ment does not hold. This thesis develops such an algorithm, which operates by discretizing real-valued

variables so that nonparametric techniques can be applied to the discrete values.

1.7 Iterative Dynamic Discretization

A natural way to handle real-valued variables with general (i.e., not necessary conjugate) distributions is to

replace continuous variables with a �nite number of possible values. I refer to this as discretization.

If a continuous variable has a compact (i.e., bounded) state space, one can simply pick the discrete values

to use by spacing the points evenly over the range of the variable. However, often this will result in sparse

coverage in critical areas and excess coverage of unimportant values. Also, uniform spacing of values cannot

(with a �nite number of values) be applied to noncompact sample spaces. These considerations suggest

using a nonuniform discretization, where points are chosen with greater density in areas that are likely to

be more critical for the task at hand.

The challenge in choosing a discretization is in picking values that are likely to be important for the task

at hand. The appropriate values depend on the problem instance and vary with di�erent sets of observations.

Thus, a discretization should be dynamically chosen and tailored to the problem instance. This, however,

creates a certain chicken-and-egg problem: we must determine what values are important without having

already solved the task. If we knew the answer, we might have a reasonable basis for knowing what values

are critical, but if we knew the answer, there would be no reason to discretize in the �rst place.

This thesis explores an iterative approach to the discretization challenge. A discretization is chosen

initially, and the problem solved using that discretization. The solution (partially) indicates where the

important values for the task are. Using this information, a new discretization is picked, concentrating

points more densely in the areas where the previous iteration suggests may be the most critical, and therefore

obtaining a (possibly) improved discretization. Thus, the discretization is re�ned iteratively and dynamically.

The iterative dynamic discretization algorithm is the topic of Chapter 4. Also, relationships between

iterative dynamic discretization and existing approximation techniques are discussed in Section 1.8.

1.8 Approximate Solution Techniques

Exact solution techniques (Section 1.5) are often infeasible for certain problems. Even for a �nite domain,

exact solutions to most interesting classes of graphical probablistic inference tasks are known to be NP-hard.

In some cases, approximation techniques may provide good solutions in reasonable time when exact solutions

are infeasible. For example,

[

Dagum and Chavez, 1993

]

identify a wide class of graphical models that can

be approximated to any degree of accuracy in polynomial time

5

, but are NP-hard to solve exactly. Exact

techniques are very sensitive to network dependency structure, while the same sensitivity is not necessarily

shared by approximation algorithms

6

. One should keep in mind, however, that approximating answers to

graphical network tasks is also NP-hard in most general cases

[

Dagum and Luby, 1993

]

.

Conjugacy considerations are another reason approximation techniques are important. While conjugacy

is necessary for exact solutions, it is not necessarily required for approximation algorithms. Thus, various

approximate methods may provide algorithms when nonconjugacy otherwise prevents exact solutions.

Iterative dynamic discretization is an approximation technique. It shares many similarities with existing

techniques. It can be viewed as a generalization of Gibbs Sampling

7

(a standard stochastic simulation

method). Discretization is clearly a form of model simpli�cation. Iterative dynamic discretization is an

5

They can be solved in time polynomial to the size of the network description and 1=�, where � is the desired accuracy.

6

Approximation methods may be quite sensitive to other factors, such as the magnitude of probabilities within a model.

7

The standard Gibbs sampling algorithm (see Page 12 and Section 3.4) is a special case of iterative dynamic discretization,

obtained when the discretization size is set to one, i.e., only one possible value is picked for each variable on each iteration.
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instance of (approximate) Knowledge-Based Model Construction (KBMC), and the study in this thesis

provides some insights into that endeavor. In fact, the KBMC perspective was amongmy earliest perspectives

and one of the main motivations for this line of research. Finally, it can also be viewed as a combination

of Markov chain Monte Carlo techniques (stochastic simulation) with exact propagation, harnessing the

strengths of each. This section reviews several existing approximation techniques for graphical probabilistic

networks along with perspectives relating these techniques to iterative dynamic discretization.

1.8.1 Stochastic Simulation

Many probabilistic inference tasks can be approximated using various forms of stochastic simulation, in

which con�gurations are drawn according to the probabilities in the model, and the frequencies within the

sample used as an approximation for the inference task. Two issues arise: how to generate the sample, and

how to use a generated sample to approximate the inference task of interest.

Generating Samples

An algorithm that generates a set of independently drawn con�gurations and bases an approximation on

this set is called a Monte Carlo algorithm. Generating samples independently is usually very di�cult to do

e�ciently; the more e�cient algorithms relax the independence of samples to obtain e�cient ways to draw

samples. These are referred to as Markov chain Monte Carlo algorithms. Although consecutive samples are

dependent, the asymptotic sampling distribution matches the distribution of interest.

A Bayesian network (or any other graphical network) represents a joint probability distribution over the

space of con�gurations, p(x). It is straightforward to generate con�gurations randomly and independently

for a Bayesian network according to p. We simply pick an assignment �rst for variables with no parents

according to the marginal probabilities at those nodes, then for each variable with no uninstantiated parents

we choose a value conditioned on the values of its parents. In a Bayesian network, this conditional probability

is an entry in the table associated with that node. The process is repeated until all nodes are instantiated.

By construction, the resulting con�guration, x, has probability p(x).

Most inference tasks of interest, however, are not queries about p(�), but instead are queries concerning

p(�je), where e (the observed evidence) is an assignment to some subset of variables. A Monte Carlo algorithm

must therefore draw samples from p(�je), not from p(�).

Logic sampling (

[

Henrion, 1988

]

) is one technique for drawing samples from p(�je). Tentative samples

are drawn from p(�) until a sample is found exactly matching e. Logic sampling requires on average 1=p(e)

trials per sample generated. Because p(e) is often very small, logic sampling is usually extremely ine�cient,

in fact, usually infeasible. Also, logic sampling cannot be applied when observations include continuous

variables, since there is generally zero probability that a sample drawn from p(�) will match e exactly.

Likelihood weighing or importance sampling (

[

Fung and Chang, 1989, Shachter and Peot, 1989

]

) also

draws samples from p(�), but utilizes every sample by weighting each sample according to how closely it

matches e. Typically, observed nodes are instantiated �rst, then the procedure for drawing a sample from

p(�) described above is followed. In practice, a few samples very close to e tend to dominate all others, so

importance sampling is usually only slightly better than logic sampling.

Logic and importance sampling are representative of Monte Carlo techniques that have been attempted

with graphical networks, and both are quite ine�cient when p(e) is small, as is typically the case. In general,

generating independent samples is di�cult to do e�ciently.

Markov chain Monte Carlo (MCMC) methods provide ways to generate samples e�ciently by sacri�cing

the independence between adjacent samples. Although consecutive samples are dependent, asymptotically

the samples are drawn from the distribution of interest.

The simplest and most popular

8

MCMC algorithm for graphical networks is Gibbs sampling

[

Geman and

Geman, 1984, Chavez and Cooper, 1990, Gelfand and Smith, 1990, Hrycej, 1990, York, 1992, Neal, 1993,

Tierney, 1994, Gelfand, 1995

]

. Consecutive samples generated by Gibbs sampling di�er in (at most) one

variable (it is possible for the same con�guration to be repeated twice in a row). To generate a new sample, a

8

Gibbs sampling is certainly the most popular of the MCMC methods in the context of graphical probabilistic models. The

Metropolis-Hastings algorithm is commonly used for numerical integration and may be in wider use overall.
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single variable x

i

is selected, and its new value drawn from p(x

i

jx

j 6=i

), where x

j 6=i

denotes all other variables

in the network. Because of the conditional independence encoded by a graphical network, the sampling

operation simpli�es to drawing a sample from p(x

i

jx

mb(x

i

)

), where mb(x

i

) is the Markov boundary of x

i

(the variables immediately adjacent to x

i

in the moral graph). A di�erent variable is changed for each

new sample, and under some basic assumptions about p and the sampling procedure (see Section 3.4), the

con�gurations are drawn asymptotically from p(�je) no matter what con�guration the process is started

from. Thus, if enough samples are drawn, they can be used in the same fashion that Monte Carlo generated

samples are used. Gibbs sampling is discussed in more detail in Section 3.4.

Gibbs sampling has a number of advantages. It is not sensitive to network structure, and thus can be

readily applied to networks with high connectivity when exact methods would be infeasible. A very big

advantage is that Gibbs sampling imposes no conjugacy requirements on p, and therefore can be applied to

general (i.e., nonconjugate) models with continuous variables. On the down side, Gibbs sampling is highly

sensitive to the magnitude of probabilities in a model, often converging very slowly when probabilities

within the model are very close to zero. Also, it requires that the operation of drawing a value for x

i

from p(x

i

jx

j 6=i

) can be implemented e�ciently. Even though in a graphical network it only involves a local

collection of variables, this operation can often be very di�cult and can limit the applicability of Gibbs

sampling.

Iterative dynamic discretization can be viewed as a variation of the Gibbs sampling algorithm; however,

instead of applying Gibbs sampling on the space of possible con�gurations, iterative dynamic discretization

applies Gibbs sampling to the space of possible discretizations. Since a discretization speci�es several possible

values for each variable, a single discretization corresponds to a set of several di�erent con�gurations, so

this is like applying Gibbs sampling at a meta-level. When the discretization size is set to one so that a

discretization speci�es a single value for each variable, the pure Gibbs sampling algorithm falls out as a

special case.

Gibbs sampling is the most popular, and probably the most appropriate, of the MCMC techniques for

graphical probabilistic models. Other MCMC techniques exist as well

[

Neal, 1993, Tierney, 1994, MCMC,

1996

]

, but most have less of a connection to graphical probabilistic networks and to the work in this thesis.

One MCMC algorithm, simulated annealing

[

Kirkpatrick et al., 1983

]

, is generally more appropriate than

Gibbs sampling for optimization problems such as �nding MAP con�gurations. Simulated annealing can

be described as being essentially the same procedure as Gibbs sampling, but applied to the distribution

�(T )p(�je)

1=T

, where �(T ) is a normalizing constant and T is a temperature. Simulated annealing gradually

reduces T while sampling is occurring. As T gets closer to zero, the highest probability con�gurations become

more distinct so that the sampling asymptotically spends more time near the optimum. The higher initial

temperatures result in higher mobility, thus promoting quicker access to the highest probability regions.

Approximating Answers

Monte Carlo and Markov chain Monte Carlo methods can be used to approximate a variety of probabilistic

inferences. All utilize a sample of con�gurations drawn according the techniques discussed above, but the

way in which these samples are utilized depends on the task being solved. The manner in which samples

are used is the same regardless of whether the samples originate from Monte Carlo simulation or MCMC

simulation

9

.

Expectations are naturally estimated using sampled frequencies. If v(x) is a function of the variables in

a model, the expectation of v given e, E

p

[vje], is approximated using the samples x

1

; ::; x

k

drawn from p(�je)

as

E

p

[vje] =

1

k

k

X

j=1

v(x

j

)

Another simple query one might estimate is a binary query such as \what is the probability that x

i

2 A,"

for some set of values A. For this, one simply counts the fraction of times this event occurs in the sample.

This is, of course, a special case of expectation.

9

Some variations of MCMC utilize only some fraction of the samples, usually spaced apart in time to reduce their dependence.

This is a minor di�erence that occurs in some versions of MCMC that would not occur in a pure Monte Carlo algorithm.
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Estimatingmarginal distributions can introduce a few additional considerations. If the variable of interest

takes on a �nite number of values, one can simply return the frequency of those values in the sample. In

many cases, it is better to use the sample to update a Dirichlet prior for the marginal distribution. This

can be used to avoid troublesome zeros that would otherwise be assigned to values that occur with zero

frequency in the �nite sample.

Estimating a marginal over a continuous variable (or even a variable with a countably in�nite sample

space) introduces additional complications. In this case, the marginal must be expressed in a parametric

form, and the parameters estimated from the sample frequencies. This can be accomplished by �tting the

parametric form to the x

i

component of the sample. However, such an estimate can be improved using a

technique known as Rao-Blackwellization (based on the well-known Rao-Blackwell theorem, e.g.,

[

Bickel and

Doksum, 1977, Page 121

]

). The distribution on x

i

given its neighbors, y, largely constrains the shape that

the marginal distribution on x

i

can have. Instead of estimating p(x

i

) directly, one estimates p(y), (denote

the estimate of p(y) by ~p(y)) and then obtains the estimate over x

i

as

~p(x

i

) =

Z

p(x

i

jy)~p(dy)

As argument in

[

Gelfand and Smith, 1990, Page 402

]

using the Rao-Blackwell theorem shows that this

estimate always has a smaller than or equal least squared error relative to the true marginal distribution.

See also

[

Casella and Robert, 1996, McKeague and Wefelmeyer, 1995

]

.

Another query that can be approximated using Monte Carlo or MCMC samples is that of �nding a

MAP con�guration. One simply returns the highest probability con�guration from those in the sample. For

this optimization task, it is often appropriate to distort the distribution to accentuate higher probability

con�gurations; however, the degree of accentuation must be traded o� against the fact that accentuations

often reduce the e�ciency of sample generation and lower mobility (and thus convergence rates) for MCMC

methods.

As discussed above, iterative dynamic discretization can be viewed as a variation of Gibbs sampling,

applied at a meta-level. In this thesis, it is applied to the problem of locating a MAP con�guration.

However, no attempt is made to accentuate the underlying distribution (as is done with simulated annealing,

for example). The fact that a single discretization contains a whole collection of con�gurations makes this

a reasonable method for searching the space, even though it might be argued that Gibbs sampling is not

the best option for optimization. The implementation also computes marginal probabilities. The marginal

distributions are for continuous variables, but marginals computed are only for a �nite number of possible

values (those in the discretization), and are only relative to the discretization of other variables in the

network. They can therefore be viewed as a discrete approximation to the continuous marginal distribution.

1.8.2 Model Simpli�cation

Several existing approximation techniques can be described as approximating the original model by sim-

plifying the network in some way. Exact techniques are then usually applied to the simpli�ed network to

obtain an approximate answer for the original problem.

Some simpli�cations involve altering the graphical structure of the network in some way, such as by

removing edges or key independence assumptions

[

Kjaerul�, 1993, Kjaerul�, 1994

]

. The mean-�eld theory

approximation approach of

[

Saul and Jordan, 1995, Saul et al., 1996

]

can also be viewed as a structural

alteration, where the mean-�eld theory is harnessed for determining how the probabilities in the simpli�ed

model are to be set. In this thesis I do not consider structural alterations.

A couple of papers (

[

Poole, 1993b, Draper and Hanks, 1994

]

) obtain anytime approximation algorithms

for Bayesian networks by restricting attention to and solving a subnetwork, and then gradually increasing the

size of the subnetwork with time. Each step of such an algorithm is also a version of structural abstraction.

Another simpli�cation is to arti�cially set certain probabilities to zero

[

Jensen and Andersen, 1990,

Castillo et al., 1995b

]

. These techniques obtain a simpli�ed model by setting small probabilities to zero.

The inter-variable structure of the network remains the same, but fewer values must be considered within

each clique, so by utilizing sparse representations of potential arrays, e�ciency of exact solutions can be

increased. This is clearly closely related to the use of a discretization, which essentially amounts to zeroing
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out all but a �nite number of possible values that a variable can take on so that exact methods can be

e�ciently executed.

Yet another simpli�cation method is sample space abstraction

[

Wellman and Liu, 1994

]

. Here the space

of possible values an individual variable can take on is partitioned into abstract values, thus resulting in

an abstract model with a smaller sample space. Applied to continuous variables, the sample space can be

partitioned into a �nite number of values. Iterative dynamic discretization is obviously quite similar to

this, except an individual point is used rather than a conglomeration of values. One can view the point

as representing a region of neighboring points to make the correspondence closer, but the real distinction

comes in how initial probabilities are assigned to the classes of values.

[

Wellman and Liu, 1994

]

grow their

sample space abstractions with time, i.e., increasing the number of values, obtaining an anytime algorithm

with each successive pass requiring more work. In this thesis, the discretization size is determined by the

user and �xed. Sample space abstraction is, at least on a conceptual level, preferable in some ways to the

sampling approach of discretization; however, it also causes a number of complications that are very di�cult

to overcome. Other papers that are relevant to sample space abstraction approaches include

[

Laskey, 1991,

Laskey, 1993, Laskey and Lehner, 1994, Kim and Valtorta, 1995

]

.

Knowledge-Based Model Construction can also be considered a form of model simpli�cation, although it

has motivations beyond simple model simpli�cation, and so I review it separately in Section 1.8.3.

1.8.3 Knowledge-Based Model Construction

An ideal intelligent agent would possess a huge broad-based store of background and domain knowledge. It

would then have the ability to bring this knowledge to bear on any particular problem it encounters within its

domain. Because uncertainty permeates all aspects of the real world, the background knowledge base itself

would consist of probabilistic relations. The ideal agent should bring all relevant background knowledge to

bear on any given problem, and if the (probabilistic) background knowledge base is rich enough, this could

mean that the rami�cations of almost any bit of knowledge could be relevant.

This model of an ideal agent views even the most trivial query as a huge inference task, one in which all

rami�cations of the agent's huge knowledge base must be taken into account.

Humans are more-or-less in this situation. The store of knowledge in a person's brain is immense by

any standard; however, when a person solves a problem that requires him to reason about uncertainty, he

certainly does not consider the rami�cations of all his knowledge. Instead, one typically recalls a small set

of relevant facts and then considers the rami�cations of those facts alone.

In a similar fashion, it is conceivable that a computerized intelligent agent might, when confronted with

a speci�c inference task, use its broad background knowledge base to construct a small probabilistic model

for solving that task. The small model is not just any small model | it is one that is dynamically tailored

to the speci�cs of the situation and information received so far. This means that it should be built from

the most relevant facts and consider the most relevant possibilities. Once a small model is obtained, the

problem instance can be e�ciently solved. This general idea has been given the nameKnowledge-Based Model

Construction (KBMC)

[

Wellman et al., 1992, Breese et al., 1994

]

, and is a new and emerging research area

within the A.I. uncertain reasoning community. Figure 1.4, taken from

[

Breese et al., 1994

]

and

[

Wellman

et al., 1992

]

, illustrates this process.

There are two obvious advantages to KBMC. First, it o�ers an approximation technique. By considering

only a subset of the entire knowledge base, the answer computed is an approximation to the more faithful

answer that takes all available knowledge into account. And second, it allows more general representations

of knowledge in the background knowledge base than those that can be handled by available inference

algorithms. For example, existing graphical probabilistic modeling formalisms are propositional in nature,

and typically allow only a �nite number of possible situations. In contrast, a general knowledge base may

contain quanti�ers and arbitrary knowledge about continuous quantities or a countably in�nite number of

situations. A KBMC approach builds a model without quanti�ers or continuous variables by selecting only

a �nite number of possible (constant) bindings for quanti�ers and a �nite number of possible values for

variables with an in�nite number of possible values. The speci�c choices are made based on the speci�cs of

the problem instance and information obtained so far about the situation, so that the �nite-sized model is

tailored to the problem at hand.
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Figure 1.4: Knowledge-based Model Construction. Given a speci�c problem instance or query, the general

domain knowledge is used to construct a probabilistic model which is then used to compute the answer.

Information learned from solving the problem may be used to re�ne the constructed model for an improved

answer.

Serious research on automating KBMC has only very recently emerged. In The Foundations of Statistics,

[

Savage, 1954

]

discussed how for any decision problem, one must construct a small world for that problem

before formal techniques can be applied to analyze it. While the concepts are the same, it has not been

until the 1990's that researchers have attempted to automate the process on a computer. Work along

these lines include

[

Goldman and Charniak, 1990, Wellman, 1990, Breese, 1992, Wellman et al., 1992,

Laskey and Lehner, 1994, Xiang et al., 1992, Goldman and Charniak, 1993, Poole, 1993a, Provan, 1993a,

Provan, 1993b, Provan, 1994, Poh et al., 1994, Sa�otti and Emkehrer, 1994, Druzdzel and Suermondt, 1994,

Nicholson and Brady, 1994, Haddawy, 1994, Glesner and Koller, 1995, Haddawy et al., 1995, Ngo and

Haddawy, 1995b, Ngo et al., 1995, Ngo and Haddawy, 1995a

]

. Related to this endeavor is the design of

general quanti�ed probabilistic logics for background knowledge representation formalisms (e.g.,

[

Bacchus,

1993

]

,

[

Bacchus et al., 1994

]

,

[

Bacchus and Grove, 1995

]

), and the fusing of multiple belief networks (e.g.,

[

Shachter, 1991

]

,

[

Matzkevich and Abramson, 1993

]

). Recommended reading for an initial introduction to

this area are

[

Breese et al., 1994

]

,

[

Wellman et al., 1992

]

,

[

Breese, 1992

]

, and

[

Haddawy, 1994

]

.

The work cited in the previous paragraph predominantly considers the problem of constructing a propo-

sitional graphical probabilistic model from a more general knowledge base containing quanti�ers. Almost

universally throughout the work is a focus on constructing provably correct models | i.e., models where no

relevant information is omitted (c.f.,

[

Haddawy, 1994

]

and

[

Breese, 1992

]

where such correctness proofs are

given as theorems). In some knowledge bases this is possible. For example, the knowledge base may contain

a rule (this example inspired by the knowledge base of

[

Breese, 1992

]

):

8x; y:Pr(Calls(x; y)jNeighbor(x; y) ^Alarm(y;Ringing)) = 0:99

The rule says that if x and y are neighbors, and y's burglar alarm is sounding, then x will call y with

probability 0:99. This rule holds for any possible binding of x and y. When a model is constructed, one or

more rules (which becomes links in a Bayesian network) such as

P (Calls(Watson;Holmes)jAlarm(Holmes;Ringing)) = 0:99

are extracted and included in the model (Neighbor(Watson;Holmes) is known). If the inference problem

that is being solved is for Holmes to decide whether or not there has been a burglary at his house, it may
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be possible to prove that the instantiation

P (Calls(Jack; Jill)jAlarm(Jill; Ringing)) = 0:99

is entirely irrelevant to the problem at hand; therefore, this latter rule can be omitted from the constructed

model.

While the construction of provably correct models is a clear advance to the state-of-the-art, it skirts one

of the most important issues of KBMC. In the general conception of KBMC, constructed models may lose

information relative to the full knowledge base, and the e�ects of (and methods for coping with) this loss of

information are of primary concern. When a broad knowledge base is su�ciently rich, nearly all facts may

be somehow mutually relevant in some roundabout way. This is not to say that they are signi�cant for any

speci�c inference problem. For example, Jack's call to Jill might increase the chances by some miniscule

amount that Watson is unable to call Holmes due to overloaded telephone circuitry, and thus ultimately

have a very small e�ect on the probability that Holmes's house was burglarized given the available evidence.

A technique that constructs a provably correct model would have to include the Call(Jack; Jill) and related

facts, despite their insigni�cant in
uence. Recall that the �rst reason listed above for considering KBMC

is to obtain approximation methods. Provably correct models do not address this motivation for KBMC.

Currently, little is known about the impact of information loss during KBMC or how it should be handled

10

.

Understanding the loss of information during KBMC is not simply a matter of knowing the e�ect of

information loss on the accuracy or �delity of answers

11

| the understanding will likely have signi�cant

impact on the overall architecture and methods for KBMC. In particular, a system whose constructed models

are provably correct has no reason to iterate on or re-evaluate the model construction step. However, the

technology for analyzing de�ciencies in constructed models and revising them appropriately may be crucial

when information loss is possible.

Iterative Model Construction

As discussed above, KBMC may be employed as a method of approximation, and/or as a means for allowing

a more expressive general knowledge base than speci�c inference algorithms can handle. In this thesis, it is

utilized for both purposes.

There is a clear tradeo� between model construction and model analysis. A more e�ective model con-

structor greatly simpli�es the e�ort required by a model analyzer, while a more powerful model analyzer

lessens the burden placed on a model constructor. It is unreasonable in most circumstances to expect a

model constructor to understand exactly what information is important or insigni�cant to a given problem

instance in all cases up front. A more reasonable archetype is for the model constructor and model analyzer

to interact iteratively | proposing a model, analyzing it, recognizing its de�ciencies, re�ning and improv-

ing the model, re-analyzing it, and so on until a satisfactory model is obtained or time pressures dictate

termination. This leads to the following central idea.

Information gained from solving a problem using a preliminary model can provide information

about how the model should be re�ned.

The general knowledge base used in this thesis consists of a stochastic process description with continuous

random variables and an in�nite horizon. To obtain an operational model, a �nite horizon is chosen and a

�nite number of possible values are selected for each variable. I refer to this selection of possible values as

framing or discretization | i.e., the process of selecting a frame of discernment (sample space) of a random

variable. The resulting discrete-valued variables are assembled as a graphical probabilistic network, and

posterior distributions are computed for the problem instance using the constructed model. It is possible,

however, that the initial selection of possible values is poor for the current problem instance given the

currently known information. The computed posteriors are used to suggest an improved set of possible

10

Measures of information loss from approximate KBMC methods have been studied by

[

Laskey, 1991, Provan, 1993b,

Provan, 1994, Laskey and Lehner, 1994

]

. However, these deal with a noniterative setting.

11

Although the e�ect on �delity is a topic of

[

Provan, 1993b, Laskey and Lehner, 1994

]

.
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values for each random variable, yielding an improved model for the task at hand. This process is then

iterated. This is iterative dynamic discretization and it is the topic of Chapter 4. I call the more general

idea of using posteriors to iteratively guide model construction and re�nement (Dynamic) Iterative Model

Construction.

The speci�cs of the knowledge base and construction process used in this thesis are in many ways quite

di�erent from other instances of KBMC in the literature. Most emphasis to date in previous published

work on KBMC has been placed on using variations of probabilistic logics for general knowledge bases, with

quanti�ers and with rules having probabilities attached. The model construction process involves selecting

instantiations for quanti�ers and subsets of rules so that a propositional graphical network results. The

model in this thesis is not a logic, and is not composed of rules. There are no explicit quanti�ers (although it

is possible to consider time and the handling of the in�nite horizon as an instance of quanti�cation, similar

to

[

Haddawy et al., 1995

]

and

[

Nicholson and Brady, 1994

]

, but this is certainly not quanti�cation in any

general sense). And the model construction step focuses on variable discretization, but not on the structural

design of the model. Indisputably, the work in this thesis does not consider many of the important aspects

of KBMC that these previous works have focused on. Nevertheless, the thesis does address and study

important issues for KBMC. Speci�cally, the thesis examines issues connected to the iterative construction

of approximate models. The iterative model construction process is an important and virtually unstudied

aspect of KBMC. Most existing work has focused on a one-time construction of a provably correct model,

followed by the analysis of that model, without any feedback from the analysis back to the construction task.

Also, this thesis plunges into experimentation with approximate-model construction (lossy KBMC) with the

belief that experience and lessons learned here transfer to other instances of knowledge based construction

of approximate models.

The Case-Study Approach

An objective of this thesis in this context is to explore the issues that arise when approximate probabilistic

models are constructed from a broad probabilistic knowledge base. Again, the emphasis here is that infor-

mation is lost during the model construction process. Conceivably, a lossy model construction process could

cause arbitrary distortions to the conclusions derived from that model. Furthermore, before constructing a

model, and without knowing the true answer in advance, it is very di�cult (if not impossible) to know the

real impact that omitting speci�c facts will have on the �nal result. These represent signi�cant and di�cult

challenges to the enterprise of approximate-model construction.

Given what little is known about approximate-model construction, the issues and problems that arise

when it is attempted, and the artistry necessary to make it work e�ectively, it seems that the best way to

study this area at the present time is by way of a case study. This thesis takes a speci�c application |

the model-based segmentation of multidimensional time series | and formalizes it as a large probabilistic

inference problem (Chapter 2). The techniques of structural decomposition (Chapter 3) and Dynamic

Iterative Discretization (Chapter 4) are then applied to construct an approximate model that can be used

for computation in order to �nd a good segmentation. The case-study approach separates out, from the

space of all conceivable artifacts of lossy model construction, only those that actually occur in this speci�c

application. In this way, the work attempts to focus attention on the issues of greatest pragmatic concern,

both for the current thesis as well as for the sake of future work in the area of KBMC.

The advantages of the case-study approach are demonstrated, for example, by the property of solution

mobility (or immobility). In the time-series segmentation application, a sub-optimal model is often con-

structed during the earliest iteration(s). The information from that model and its solution are subsequently

used (by iterative dynamic discretization) to re-assess the choices leading to the particular constructed model.

The surprise from the case-study is that often each individual choice in the model's construction is nearly

optimal in the context of all the other choices that have been made, even though the complete set of choices

has substantial room for improvement. The result is that as each choice is re-evaluated in the context of the

current model, no signi�cant change occurs, and iterative model construction stays in a highly stable local

minimum

12

.

12

Theoretical results guarantee that the algorithmwill eventually escape the local stability if run long enough, but immobility

greatly slows rates of improvement.
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It is hardly surprising that an iterative algorithm can get stuck in a local minimum. However, quite a lot

can be understood about the nature of these stable sub-optimal solutions in a particular domain, and I have

found that algorithm variations can have a dramatic impact on the mobility. With some study, it is apparent

that the problem is exacerbated in the time-series segmentation application by particular aspects of the

formalization. This insight suggests a very simple addition to the iterative dynamic discretization algorithm,

while maintaining the same local evaluation of individual choices. The modi�cation (Section 6.7) in this case

is rather speci�c to the time-series segmentation problem (i.e., a domain-dependent modi�cation), but it is

introduced to speci�cally counterbalance the application-speci�c property that is primarily responsible for

the local model stability. The modi�cation greatly improves mobility with dramatic impact on convergence

rates.

The experience obtained from this case study suggests that mobility (or lack of it) is a signi�cant concern

for iterative model construction, but that certain properties of domain knowledge formalization may be

largely responsible for the predominant negative e�ects. Once recognized, these may be compensated for

through relatively simple means. At a minimum, anyone embarking on a lossy KBMC project would be

wise to examine their knowledge formalism for similar characteristics that might lead to immobility, and to

consider in advance what can be done to compensate for or eliminate these characteristics. The experience

suggests that a future study, empirical or theoretical, to characterize mobility of iterative KBMC techniques

and the conditions under which it is extreme, could be of considerable bene�t to the endeavor of lossy

KBMC. This one example demonstrates how the current case study may serve to provide a focus on the

artifacts of real pragmatic concern. Similar issues are explored throughout the latter chapters of this thesis.

While developing and experimenting with iterative dynamic discretization, many of the basic ideas

evolved to be increasingly similar to MCMC techniques. The evolution occurred largely in response to

di�culties encountered and empirical behavior observed, and the implementation of the natural solutions to

these obstacles along the way. Most of the resulting connections would exist as well for other instances of

approximate, iterative KBMC, since they are more a result of the iterative and approximate nature of the

process than to anything speci�c about this instantiation or application of iterative dynamic discretization.

As such, these connections provide a number of potentially interesting insights and perspectives for KBMC.

For example, notions of how to view and analyze asymptotic stability and correctness approximate iterative

KBMC are suggested, which may eventually serve as analogues to the stronger versions of correctness in

the noniterative case, such as those proved by

[

Haddawy, 1994

]

and

[

Breese, 1992

]

. This could potentially

help in moving the study of approximate KBMC from a purely heuristic and empirical ground to a more

solid theoretical foundation. It may also provide fruitful connections between approximate KBMC and other

existing approximation techniques.

The case study explores a number of other issues. For example:

1. What arti�cial biases are introduced purely as the result of iterative model construction?

For example, a number of arti�cial biases resulting from poor discretizations cause the segmentation

algorithm to identify more transitions than it otherwise would.

2. When do these biases adversely bias other choices or future iterations of model construction?

For example, a poor discretization of one transition time can cause the discretization of the following

transition time to be even worse. Instances where arti�cial biases gets ampli�ed in this manner are

particularly deserving of attention.

3. How data-directed should/must model construction be?

Exact (i.e., nonlossy) KBMC techniques such as

[

Breese, 1992

]

and

[

Haddawy, 1994

]

are entirely

model-directed, with the constructed model being perfectly in agreement with the knowledge base.

More generally, however, there are often heuristics based on the data, or subsets of the knowledge-

base, that can be quickly evaluated to suggest appropriate parameters for the constructed models.

The model construction of

[

Nicholson and Brady, 1994

]

is, for example, highly data-driven. However,

reliance on data-directed methods generally introduces an additional bias, whereby the heuristics or

partial knowledge used for model construction exerts an disproportionate amount of in
uence on the

end result.
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These are all instances of issues begging for additional case studies. The current case study provides a

data point and at least some insight into each of these issues.

A case study has clear disadvantages as well. Strictly speaking, all conclusions are speci�c to the partic-

ular application. It must, at this point, be taken largely on faith that lessons learned here transfer to other

applications and other manifestations of KBMC. A deep understanding of why a particular issue arises in

this application can often help one to identify whether the same issue arises in another application; however,

one should still be wary that issues that do not prove signi�cant to this application could very well prove

important in other applications. It is appropriate at this early stage to begin populating our understanding

with lessons learned from case studies. It is also important to remain honest about the true generality of

the lessons learned.

There are a number of things that can be done to increase the chances that lessons learned from this case

study transfer widely to other instances of lossy KBMC. To these ends, every e�ort has been made in this work

to use only the probabilistic knowledge contained in the general model while avoiding building application-

speci�c heuristics into algorithms. Every e�ort is made to use general principles in algorithms rather than

speci�c \hacks" that seem to work to empirically for time-series segmentation. These e�orts help to ensure

that the issues experienced are due to the handling of probabilistic knowledge, and that the techniques to deal

with artifacts have the potential of being widely applicable beyond this speci�c application. In addition, the

time-series application permits a great degree of variation | as experience with di�erent variations grows,

the breadth of the issues and lessons learned also grows, becoming (hopefully) more indicative of the scope

of issues for lossy KBMC in general. These are general principles followed in this work in order to maximize

the usefulness of this case study. Pragmatically, there are limits to how closely they can be followed, and it

must still be remembered that this is still a single case study.

1.8.4 Hybrid Combinations

When it can be applied, exact propagation is usually superior to simulation and approximate methods | it

produces exact answers, and without a need to iterate, can be much more e�cient. The two primary factors

that can prevent a reasonable use of exact propagation are (1) a complicated graphical structure, and (2)

nonconjugate distributions. Exact methods do not su�er from, and in some cases can even bene�t from

(

[

Jensen and Andersen, 1990

]

), zero or close-to-zero probability con�gurations. Compare these attributes of

exact propagation to those of Gibbs sampling. The e�ciency of Gibbs sampling is generally insensitive to

graphical structure (although it is sensitive to the size of the domain) and makes no conjugacy requirements

on the distributions. E�ciency is adversely a�ected by low probability con�gurations, and zero probability

con�gurations can destroy the irreducibility property that is necessary for correct results (see Section 3.4).

Because the properties of exact propagation and Monte Carlo schemes seem to complement each other

so well, there is considerable promise for utilizing the strengths of both approaches by developing hybrid

algorithms | combining exact with Monte Carlo methods.

To date, there appear to be have been two methods published in the existing literature for combining

the two approaches: Blocking Gibbs

[

Hills and Smith, 1992, Jensen et al., 1995

]

and Hybrid Propagation

[

Dawid et al., 1994, Kjaerul�, 1995b

]

. This thesis presents two more approaches for combining the two:

focused Gibbs (Section 3.4.1) and iterative dynamic discretization (Chapter 4). Again, this is one more

possible perspective on this work | as a combination of stochastic approximation and exact inference (see

Section 5.4).

Gibbs sampling changes the value for one variable at each step. The same method can be applied by

grouping variables into blocks and then treating each block as if it were a variable, changing the value of one

block at a time. This is called Blocking Gibbs (see Section 3.4.2). It is widely believed that blocking improves

convergence rates (e.g.,

[

Amit and Grenander, 1991, Kjaerul�, 1995b, Besag et al., 1995, Roberts and Sahu,

1996

]

), with larger blocks resulting in larger convergence

13

, but it also increases the computational di�culty

each step. Speci�cally, \blocking moves any high correlation ... from the Gibbs sampler over to the random

[value] generator [for each component]"

[

Seewald, 1992

]

. However, this is where exact methods may be of use,

13

However, this is not universally true, for there are counter-examples in

[

Roberts and Sahu, 1996

]

that demonstrate that

blocking can actually slow convergence in some cases.



1.9. TIME-SERIES SEGMENTATION 21

and therefore result in a useful combination (

[

Jensen et al., 1995

]

). Within each block, the graphical structure

of the network within that block is utilized for the purpose of e�ciently generating a sample. The block

is solved (given an assignment to its values) using exact methods, and once these distributions have been

obtained, a simple forward sampling strategy can be applied within the block to generate an independent

sample from the correct distribution.

[

Jensen et al., 1995

]

give empirical evidence that this combination

can signi�cantly improve the convergence rates over Gibbs sampling. Further, in their problem, continuous

variables prevent direct application of exact methods, so the hybrid combination is useful. Blocking Gibbs

is well-studied and is not necessarily tied to a combination of Gibbs with exact methods | it is just the

paper by

[

Jensen et al., 1995

]

that supplements Blocking Gibbs with exact propagation.

The second existing combination is called hybrid propagation and has been examined by

[

Dawid et al.,

1994, Kjaerul�, 1995b

]

. In this method, \universes" (usually cliques in a junction tree) are designated as

being either exact or Gibbs. Messages are then passed using a control scheme similar to that used by

exact propagation, except that Gibbs universes incorporate messages by simulating their local distribution

and generating a list of possible local con�gurations. The full universe is then replaced by the list of local

con�gurations | if the original universe was continuous, it becomes discrete, or if discrete, all ungenerated

con�gurations become zero weighted. The sampled universe becomes an approximation of the original

universe, and from that point exact propagation then treats it as if it were any other exact clique in the

junction tree. The idea has been elaborated in

[

Dawid et al., 1994, Kjaerul�, 1995b

]

, but apparently it hasn't

yet been studied to the point where empirical results are available.

Focused Gibbs sampling, introduced in Section 3.4.1 is a very simple idea that provides yet another way

to combine Gibbs sampling with exact propagation. The idea is simply to apply Gibbs sampling to a subset

of variables in a model (the focus set), sampling a new value for a variable at each step conditioned on

the remaining variables in the focus set. Exact methods (propagation) are necessary to marginalize out the

remaining variables from each step of Gibbs so that the procedure correctly implements Gibbs sampling on

the focus set. See Section 3.4.1.

Finally, iterative dynamic discretization applies Gibbs sampling to the space of possible discretizations,

rather than to the space of possible con�gurations. Each step of the Gibbs sampling produces a discrete set

of con�gurations, and exact propagation can be applied to solve the discrete problem (at each iteration).

Again, this is a method for combining exact propagation with Gibbs sampling (Section 5.4).

1.8.5 Optimization

For the particular problem of �nding a MAP con�guration, in addition to approximation techniques already

reviewed, many standard optimization approaches can be applied. The task has been formulated as a linear

programming problem

[

Santos, 1994, Li and D'Ambrosio, 1994

]

, and as a heuristic search task

[

Dechter et al.,

1990, Henrion, 1991

]

.

[

Rojas-Guzm�an and Kramer, 1993

]

apply genetic programming to the task. Although

iterative dynamic discretization has little resemblance to this work, it does resemble genetic programming

in that a single discretization could be viewed as a population of con�gurations. Changing discretizations

over time corresponds to altering the population of con�gurations over time. If much of the power of genetic

programming comes frommaintaining a population of possibilities, this power is shared by iterative dynamic

discretization.

[

Azevedo-Filho and Shachter, 1994

]

use an optimization technique called Laplace's method

to search for MAP con�gurations. Finally, it should be repeated that simulated annealing is clearly a good

substitute for Gibbs sampling for optimization tasks.

1.9 Time-Series Segmentation

One tangible result of this thesis is a model-based algorithm that segments a multi-dimensional time series

into qualitatively distinct time intervals and labels signal shapes and context modes. A user speci�es

knowledge about the time series in the form of a Hidden Segmented Semi-MarkovModel (H.S.S.M.M.), which

can be thought of as a language for expressing probabilistic knowledge about durations, signal shapes, and

transitions. E�ectively, this model speci�es an evaluation function over the space of possible segmentations,

and the algorithm uses this evaluation to search for the optimal segmentation.
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Real-world applications for multi-dimensional time-series segmentation abound. The stock market presents

an obvious example of multi-dimensional time series data, where the historical stock prices for each individ-

ual stock constitute one dimension. Segmenting these histories may identify where qualitative changes in

market conditions occur, which might then be useful for various �nancial analyses. However, stock market

applications may not always be in the spirit of time-series segmentation as addressed in this thesis. A distin-

guishing feature of the segmentation task in this thesis is that it is model-based. It is aimed at applications

where there exists a probabilistic model (albeit possibly a very weak and partially qualitative model) of the

underlying system that generates the time-series data to be segmented. The appropriateness to stock market

applications really depends on the availability of a suitable economic model of the market.

A complex system such as the Space Shuttle contains many sensors, each collecting data over time, and

begs for a model-based approach since the underlying system is human designed and very well-understood.

Identifying qualitative changes across suites of sensors can pinpoint context changes of various sorts |

changes in mission phase, astronaut activity, or system con�guration and conditions | that can then improve

automatic monitoring or diagnosis capabilities. Segmentation of acoustic signals might be used to track or

transcribe musical performances, with the score serving as an indirect source for an underlying model.

Section 2.1 discusses the problem and potential applications in more detail.

The time-series segmentation task serves here as an interesting and useful case study for knowledge-based

approximate-model construction. Finding the optimal segmentation of a time series entailed by the domain

knowledge (the H.S.S.M.M.) is no trivial matter. The H.S.S.M.M. representation is very expressive, allowing

continuous variables, nonconjugate continuous distributions, and speci�es the behavior of the signals over

an in�nite horizon. In essence, the domain knowledge is just too complex to be used directly as a model

during computations. Iterative dynamic discretization is employed to construct a discrete, �nite model that

is used for computation. After computations have been performed using a preliminary model, clues for how

to improve the model are incorporated to construct a new model for computation. In this fashion, speci�c

information about the speci�c data that is being segmented can incrementally be incorporated into the

construction of the model used for computation, thus ultimately improving the model being used.

1.10 Contributions of Thesis

The primary thesis explored by this research is that information learned from solving a constructed discrete

model can be used in an e�ective manner to select a new discretization. This is the central idea behind

the iterative dynamic discretization algorithm. Application of iterative dynamic discretization to time-series

segmentation produces a new algorithm for that task. Thus, new technologies introduced by this thesis

include:

� Iterative dynamic discretization.

� A time-series model and segmentation algorithm.

The contributions of the iterative dynamic discretization algorithm can be viewed from many angles:

� As an (approximation) algorithm for handling continuous variables with nonconjugate distributions in

graphical networks

14

.

� As a method for combining the strengths of Gibbs sampling with exact propagation. Or as a method

for accelerating convergence of MCMC methods.

� As an instance of approximate knowledge-based model construction. The studies in this thesis o�er

experience and lessons for the endeavor of iterative model construction.

The primary emphasis in this thesis is on general methods for probabilistic inference. However, the

development was entirely directed at a single application area: model-based time-series segmentation. Time-

series segmentation is of great interest by itself, and the thesis makes contributions in this area as well.

14

The same techniques can also be applied to discrete variables with very large sample spaces.
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First, the HSSMM is introduced in Chapter 2. The segmented nature of this model is unique and is a

new contribution of this thesis. It may be convenient for many time-series modeling applications. Combined

with the semi-Markov model, or the generalized semi-Markov model, this provides a very rich descriptive

language of time-series behavior.

The general study of probabilistic inference techniques in this thesis endow the HSSMM formalismwith a

great deal of 
exibility. Decomposition techniques (Chapter 3) and the conversion to graphical probabilistic

network formmake it relatively easy to generalize the model in domain-speci�c ways, for example, to leverage

additional structure in the state space, generalize the transition model in various ways, and so on.

Structural decomposition along with iterative dynamic discretization provide a complete algorithm that

utilizes the HSSMM to perform time-series segmentation. Thus, the thesis contributes a new algorithm for

the time-series segmentation problem.

The two contributions to time-series segmentation, i.e., the HSSMM and the algorithm for solving the

HSSMM, should really be viewed as distinct contributions. Even if one did not like the algorithm, for

whatever reasons, or if something better comes along later, the HSSMM still provides a potentially useful

modeling language for describing time-series behavior. If one prefers to apply pure Gibbs sampling, for

example, and ignore the improved algorithms presented in later chapters, the HSSMM formalism could still

be utilized. Conversely, if one has a probabilistic inference problem that is not modeled using an HSSMM,

and may not even be a time-series segmentation problem, the algorithmic techniques presented in Chapters 3

and 4 can still be harnessed.

As a study of issues concerning probabilistic inference in general, the thesis makes contributions in a

number of areas. The basic ideas behind structural decomposition in Chapter 3 are not new to this thesis;

however, the thesis does provide a fairly unique perspective on one role these techniques can play as compared

to the use that is dominant in the literature. Most existing literature treats graphical probabilistic models as

formalisms for knowledge representation, while this thesis promotes the models as computational tools that

are often useful for decomposing and solving problems in general. Chapter 3 generalizes current propagation

algorithms via an easy to understand axiomatization. This is quite similar to an axiomatization given in

[

Shenoy and Shafer, 1990

]

, but I believe the presentation here is far easier to understand and apply. It is

also slightly di�erent than the Shenoy-Shafer axiomatization. For example, Jensen's algorithm (also known

as the Hugin algorithm) falls out of this axiomatization, but is not the same algorithm that results from the

Shenoy-Shafer axiomatization.

Chapter 4 presents and studies the iterative dynamic discretization algorithm. A general framework for

algorithms of this type is described and identi�es the possible dimensions de�ning a speci�c variation of an

iterative discretization algorithm of this type. A proof of asymptotic stability is given, showing that under

suitable assumptions, iterative dynamic discretization always converges to a unique stable distribution of

discretizations. In other words, the asymptotic behavior of the algorithm does not depend on the starting

point (i.e., the initial discretization). The analysis also shows that the process is recurrent, meaning that

the entire space of discretizations will, with probability 1, eventually be covered by the algorithm. Among

other things, this means that the user can rest assured that if run long enough, the algorithm will eventually

produce a con�guration arbitrarily close to the optimum

15

. Although stability is proved, a useful character-

ization of the nature of the asymptotic behavior of the algorithm (i.e., precisely how the limiting behavior

of the algorithm related to the distribution of interest) remains an open problem.

Finally, empirical evidence is given that iterative dynamic discretization can drastically (by a couple

orders of magnitude) reduce the number of iterations required relative to Gibbs sampling (Figure 1.1). I

examine a number of situations and troublesome phenomena that have been observed to occur, and which

provide insight into the challenges of discretization and iterative model construction. I also investigate

empirically the overall impact of various pieces of the algorithm.

1.11 Thesis Road Map

Chapter 2 begins by de�ning the time-series application domain and developing the probabilistic modeling

formalism for describing time-series behavior (the HSSMM). It de�nes the time-series segmentation task

15

Although this theoretical result says nothing about how long this will take.
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is precise terms, and �nally in Section 2.4 reviews previous approaches to time-series segmentation. All

algorithm developments in later chapters are couched in terms of the time-series segmentation problem.

Chapter 3 decomposes the time-series segmentation problem de�ned in Chapter 2, turning a huge opti-

mization task on a continuous k-dimensional space into k three-dimensional inter-related optimization tasks.

This enormous simpli�cation is based on conditional independence within the model and loses no information

in the process. Propagation is used to communicate information between the three-dimensional subproblems

such that afterwards, each problem can be optimized individually to obtain the globally optimum solution.

It turns out, however, that even the three-dimensional optimization tasks are still too large to handle with

exact methods. The solution to this comes in Chapter 4. Chapter 3 then discusses the methodology behind

structural decomposition in general. A new and clean axiomatization is given which indicates when the prop-

agation framework can be applied to harness structure to solve a particular problem. The axiomatization

applies beyond the reaches of probability theory and can be interpreted as a general computational method

for utilizing the structure that exists within a task for computational e�ciency. A short discussion is given

at the end of the chapter on the options that exist when structural decomposition is, by itself, insu�cient

for solving a probabilistic inference problem. This includes (Section 3.4) a thorough description of Gibbs

sampling, and a description of a new and useful variation called focused Gibbs sampling.

Chapter 4 introduces the iterative dynamic discretization algorithm. With this algorithm, the subprob-

lems identi�ed in Chapter 3 can �nally be solved (actually, the algorithm �nds an approximate solution).

First, a basic framework for choosing discretizations is described. This framework elucidates the important

variations possible between iterative discretization algorithms in a way that makes for a natural under-

standing and comparison of alternative algorithms. An algorithm for randomly picking discrete points for a

single variable based on the model, data, and current discretization of neighboring variables is developed in

Section 4.4.2. Asymptotic stability of the algorithm is analyzed in Chapter 5, and empirical evidence given

in Chapter 6 that iterative dynamic discretization can greatly improve convergence rates over pure Gibbs

sampling. Section 6.11 describes speci�c di�cult situations that arise when the algorithm is run. This is a

great source for lessons to be learned from the case study, and suggests a number of improvements to the

algorithm. Chapter 6 empirically examines the e�ect that several variations on the algorithm have on overall

performance.

Chapter 7 discusses a number of issues related to the modeling of a time-series in a segmentation appli-

cation. These issues are separate from the algorithmic issues of Chapters 3{6 that deal with searching for,

or computing, a solution. For example, how does the uncertainty or �delity of a time-series model impact

the optimal segmentation? Questions of robustness such as this are related to a more general issue of how

strong the prior expectations of a model are. Weak expectations lead to more data-directed solutions but

also to more sensitivity to noise in the data, while strong expectations create an invariance to noise with a

decreased sensitivity to unexpected occurrences. Some aspects of time-series behavior cannot be modeled

using an HSSMM. These are discussed, and a generalization of the HSSMM is outlined. Also, some brief

comments about the prospect of learning models from data are given. Chapter 7 touches a number of key

issues to the endeavor of model-based time-series segmentation, and one of which is worthy of signi�cant

investigation, but each is considered only very brie
y. The focus of this thesis is much more on inference

and computation than on time-series modeling issues.



Chapter 2

Time-Series Segmentation

Multidimensional time series occur in many applications. Complex physical systems such as industrial

plants, spacecraft, robots, and medical monitoring equipment often contain many sensors that continually

produce streams of sensor readings. Financial markets produce rich sources of multidimensional time series

used in a variety of investment analysis applications, as do trend analysis applications in environmental and

socio-political domains. And the list goes on. In many of these domains, it can be useful to segment time

series into time intervals identifying where qualitative changes in the behavior or shape of the time series

occur.

This thesis develops and studies a probabilistic model-based segmentation algorithm. This exploration

provides a case study of the issues involved in framing and solving a probabilistic computational model.

This chapter discusses the segmentation problem in Section 2.1, and de�nes the probabilistic model used to

guide the segmentation process in Section 2.2.

Time-series segmentation is, by itself, a topic of great interest. In this research, however, it serves more

as an application area for the study of general probabilistic inference methods. The time-series segmentation

algorithm developed in this thesis is a contribution, but the emphasis is much more on the study of general

probabilistic inference techniques.

2.1 Problem Description

Time-series segmentation is one of the most fundamental problems of statistics. It is essentially a problem of

detecting and localizing change points, i.e., points in time where the behavior of a system (abruptly) changes

in some distinct way. Consider that most applications of statistics (in research studies, etc.) utilize tests for

detecting changes or di�erences between two or more populations. Time-series segmentation extends this by

detecting whether and when changes occur. Optionally, as done here, it can also including the identi�cation

of what the change is (e.g., assigning a meaningful label the states occupied between transitions).

Raw data often comes in the form of a time series, and it is often necessary to isolate segments where

individual analyses can uniformly be applied. Abrupt changes in the behavior of a system invalidates many

forms of analysis, so it is important that such changes be identi�ed before any such analysis is applied. In

some domains, the segmentation of a time series is a fundamental step in generating a higher level description

of the data that can then be used for other purposes.

This thesis focuses on model-based segmentation of (multi-dimensional) time-series. An underlying model

of the possible transitions, durations, signal characteristics between transitions, and degrees of uncertainty

in all these factors is required. A model-based approach is best when there is some basis for expectations

about a signal. Multi-dimensional refers to the fact that there are multiple related sensors, each generating

its own time series on a shared time scale. While a model could specify only extremely weak expectations,

and therefore perform in a very data-driven fashion (discussed in Section 7.1), this is clearly not a scenario

where a model-based approach is most appropriate. Therefore, the approach described here is aimed at

domains where a model of the underlying transition structure is (or could be made) available. This may

be the case, for example, if the underlying system that generates the data is human designed or otherwise

25
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well-understood. This thesis does not consider the task of learning a model from data.

2.1.1 Some Domain Examples

It is not di�cult to �nd important uses for time-series segmentation. Since almost any raw sensor data

comes in the form of a time-series, and since most complex systems exhibit qualitative changes of one form

or another at various points in time, the problem arises naturally in almost any conceivable �eld.

Several applications in the medical domain have been developed based around a core technology of time-

series segmentation. Several neurological disorders can be detected using the electroencephalogram (EEG).

The EEG consists of 8 to 16 channels of electrical brain wave activity. The activity transitions through

di�erent phases as a patient passes through di�erent sleep cycles or forms of mental activity. Certain

neurological disorders result in anomalous patterns during some of the phases. Some disorders occur in

short-lived phases that constitute a small fraction of a total EEG, so to detect and analyze these, it is

critical to segment the EEG time-series to isolate the critical phases. Segmentation has been applied to

EEGs in

[

Bodenstein and Praetorius, 1977, Ishii et al., 1980, Basseville and Benveniste, 1983

]

.

Diagnosis of heart conditions by way of the phonocardiogram (PCG) or the electrocardiogram (ECG)

presents a domain very similar to the EEG, also bene�ting from segmentation, and has been studied by

[

Stockman, 1982, Lee and Chou, 1989, Lee and Chou, 1990

]

. For example, the presence of murmurs is

associated with whether a secondary pumping sound is heard following the primary heart beat, something

best detected when the signal is separated into segments of pumping sounds, silence, etc. Note that these

medical examples have a very good basis for expectations about transitions, and are thus very natural

candidates for a model-based approach to segmentation.

The analysis or understanding of speech and music from audio waveforms presents another rich source

of time-series segmentation problems. Transcription from audio-signals to notes on a score is essentially a

problem of time-series segmentation. Because music has considerable regularity, a model-based approach

would seem to be very appropriate. A problem with an even greater basis for expectations is score following,

an important ability of an intelligent accompaniment device, for example, where a score provides very

strong expectations about when and how transitions occur (

[

Dannenberg, 1984, Vercoe, 1984

]

). A major

portion of speech recognition concerns segmentation | for example, segmenting a signal into phonemes, and

expectations have long been known to be key to good performance at this task (

[

Li and Gibson, 1996

]

).

The stock market is a natural domain for many time-series analyses. It is a great source for multi-

dimensional time-series data, with each stock comprising a single dimension, and inter-relationships existing

between stocks in common industries, etc. Model-based approaches are appropriate for some of these anal-

yses, and are not very appropriate for others. The ability to segment stock market data, for example to

identify passing trends, has potential to improve numerous forms of analysis or historical understanding of

market conditions that would otherwise not be possible (at least not automatically). The ability to quickly

detect an abrupt change, such as a swing from a bear market to a bull market, could (if possible) be very

pro�table for an investor. Depending on the style of analysis, the information available, and the economic

models utilized, model-based approaches for segmentation may or may not be the best choice for �nancial

analysis. A �nancial method that integrates market fundamentals with quantitative technical indicators

is an example that calls out for a model-based approach since the relationship between fundamental and

technical indicators must somehow be established.

These examples demonstrate some of the many potential uses for time-series segmentation. In addition to

these, I discuss one additional use of time-series segmentation, within a Space Shuttle monitoring application,

in depth. This example further illustrates how uses for time-series segmentation can arise. It is also signi�cant

in that it was the example that motivated the use of time-series segmentation as the driving application for

the research reported in this thesis.

2.1.2 Tracking Context in a Automatic Monitoring System

When the Space Shuttle (or other NASA mission) is in 
ight, a large number of human mission-control

operators on Earth monitor signals produced by the thousands of sensors on board the shuttle, looking for

abnormalities or signs of developing threats to the mission. The cost to maintain the large number of human
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operators for this task comprises a substantial fraction of the total cost of a Shuttle mission. For this reason,

computerized tools to assist in this monitoring task could reduce operations costs considerably.

The SELMON project at the Jet Propulsion Laboratory (

[

Doyle, 1995, Doyle et al., 1993, Doyle and

Fayyad, 1991

]

) targets the Shuttle monitoring application. The system attempts to focus an operator's

attention on the most informative and critical sensors. If done well, this can allow a single operator to monitor

more sensors, thus reducing the overall personnel requirement and cost. It may also help in crisis situations

by helping an operator focus on the most important sensors when hundreds of alarms are simultaneously

sounding. A similar system for this domain was developed by

[

Horvitz et al., 1992, Horvitz and Barry, 1995

]

.

The key to automatic monitoring is the ability to di�erentiate between normal and abnormal signals.

The most trivial way to detect abnormalities is by using simple thresholds. For example, if the oil pressure

drops below a certain threshold, an indicator light (an alarm) comes on. The idea can be generalized by

applying thresholds to metrics derived from the raw sensor data, for example, by sounding an alarm when

a temperature rises or falls at an excessive rate (thresholding the signal's time-derivative).

The main problem with simple thresholds (and many other approaches) is that they lack context-

dependence (

[

Doyle, 1995

]

). What is normal for any given sensor often depends on a system's operating

mode (takeo�, orbit, re-entry, etc.), what activity is in progress (are the astronauts sleeping, exercising,

space-walking, etc.), and what environmental factors are present (is the Shuttle in the earth's shadow or

exposed to the sun?). When �xed thresholds are set loose enough to catch only those readings that are

anomalous in all contexts, many problems can go undetected. On the other hand, if �xed thresholds are set

tighter than this, too many excess alarms are generated by normal conditions. Truly e�ective use of thresh-

olds or other methods requires an analysis to take context into account, adjusting thresholds depending on

the current operating context.

When context is totally observable, adjusting for context is conceptually simple. For the Shuttle, the

phase of the mission (takeo�, orbit, re-entry, etc.), is a critical piece of context, but is also totally observable

since the current phase of the mission is something that is always known to the system. In fact, the SELMON

system already addresses context-dependence for directly-observable context. On the other hand, partially

observable contexts present a much greater challenge. For example, the current activity of the astronauts is

not usually observable, but, for example, may drastically impact oxygen consumption and thus be a critical

consideration when monitoring the functioning of life-support subsystems.

For an illustrative example, consider the task of monitoring engine performance in an automobile. There

is no sensor to detect whether the car is driving uphill or on level ground. However, engine ping while

cruising on 
at ground, or the absence of engine ping while accelerating uphill, are both indications of

abnormalities (in both cases, they indicate an engine tune up is needed). Determining whether engine ping

is normal or abnormal requires knowledge of context | the slope of the roadway | but is not directly

observable. However, many other sensors in the car are in
uenced by the same context, e.g., instantaneous

fuel consumption, suspension alignment, engine R.P.M., drive shaft torque, etc., each of which provides some

clues about the important context. By simultaneously incorporating all these clues, one might plausibly track

the relevant context, even when one abnormality (e.g., engine ping) exists. Note that considerable amounts

of uncertainty are inherently part of the problem of tracking partially observable context.

A module to track partially-observable context would provide a means to improve the monitoring abilities

of SELMON, and thus provided a well-motivated application domain for experimenting with probabilistic

inference. Tracking context modes amounts to tracking qualitative changes in system behavior | i.e., time-

series segmentation | with the added need to label the operating modes in a meaningful way. This latter

requirement, along with the fact that the Shuttle is a well-understood system and that tracking should

function well even in the presence of a few anomalies, strongly suggests the utilization of a model-based

approach. Thus, a model-based multi-dimensional time-series segmentation problem naturally arises in this

potentially pro�table context-dependent monitoring application.

While initially motivated by the Shuttle monitoring application, this thesis does not address most of

the monitoring concerns, largely because these are addressed already by SELMON, and largely because the

scope of the thesis should (and must) be narrowed appropriately. To match well with the requirements

of a context-tracker in the context of a monitoring system such as SELMON, the basic problem to be

solved is to produce, at any moment in time, a description of the single most-likely context history over

time. SELMON would have little trouble incorporating a description in this form. Had the motivating
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Figure 2.1: A two dimensional time series. The data shows fuel line temperature readings for the Space

Shuttle's �rst Auxiliary Power Unit (A.P.U. #1) during the 55th Shuttle mission.

example been di�erent, I might have concentrated the research more directly on problems like evaluating

the probability of key propositions. Because of considerations such as this, the use of a motivating example

has had some important impact on the nature of problems emphasized in the work reported in this thesis.

2.2 Hidden Segmented Semi-Markov Models

Model-based segmentation requires a model of the process generating a time series. This section presents a

language for expressing such a model, the language of Hidden Segmented Semi-Markov Models (HSSMMs).

Consider the time series shown in Figure 2.1. The graph shows the evolution of two fuel line temperature

readings, T104A and T108A, during a 
ight of the Space Shuttle. A natural way to describe the evolution

of this time series is shown in Figure 2.2. In Figure 2.2, the system begins in the startup state where T104A

decreases while T108A slowly increases. After about 7,000 seconds, the system transitions to the heat up

state where it stays for about 1,000 seconds while both temperatures rapidly increase. Then, in the cool

down state, T104A decreases more or less linearly while T108A exponentially decays, with this mode lasting

for about 5,000 seconds. The system then alternates between the heat up and cool down states inde�nitely.

With a little further elaboration, the description shown in Figure 2.2 can be considered to be a model

of the time series, and such a model can be used to guide the segmentation of a time series such as the one

shown in Figure 2.1. In fact, the description of Figure 2.2 demonstrates all the basic components of the

HSSMM.

There are two problems with using Figure 2.2 literally as a model of the time series. First, it is not

operational | the components must be stated more precisely. For example, what is meant by about 7,000
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Figure 2.2: A simple time series description.

seconds? Would 10,000 seconds qualify? Similarly, what signals qualify as slowly increasing, exponentially

decaying, or linearly decreasing? When data is noisy (unlike the exceptionally clean data of Figure 2.1),

deciding whether signals qualify as one or more of these shapes may involve a judgement call, and therefore

in an implementation precise de�nitions are necessary. A second problem with using Figure 2.2 literally as

a model is that the transitions may be too rigid. It is possible that the same sensor may evolve slightly

di�erently on a di�erent shuttle mission, and if this is a possibility, it is desirable to model transitions as being

stochastic. By addressing these de�ciencies | i.e., allowing probabilistic transitions and operationalizing

the imprecise components | the HSSMM is obtained.

2.2.1 The Transition Process

Figure 2.3 shows a more precise description of the transitions corresponding to the time series in Figure 2.1.

The �gure generalizes the deterministic transitions of Figure 2.2 to stochastic transitions, and it replaces the

approximate waiting times with fully speci�ed distributions over the possible waiting times for each state.

The signal shapes corresponding to the right hand side of Figure 2.2 are not shown in Figure 2.3 | these

will be covered in Section 2.2.2.

The model in Figure 2.3 consists of a state space S = fstart up; heat up; cool downg, transition proba-

bilities a

s

i

;s

j

, an initial state distribution b

s

0

, and waiting-time distributions for each state, c

s

i

(�t), where

s

i

; s

j

2 S and �t 2 (0;1). Note that S is discrete and �nite and �t is a continuous random variable. These

components are described below.

A model of this form is called a (continuous-time) semi-Markov model. The semi-Markov property means

that at the instant following a transition, the (new) state of the process summarizes everything there is to

know about the process. A process with this property is called a semi-Markov process. This is in contrast

to the Markov property, which means that at any moment in time, the state of the system summarizes

everything there is to know. The Markov property implies the semi-Markov property, and a continuous time

Markov model can be represented as a semi-Markov model with exponential waiting-time distributions. On

the other hand, a semi-Markov process (with nonexponential waiting time distributions) is not Markov since

the amount of time that the system has been \waiting" in the current state provides additional information

about when the next transition will occur. Because the state space is discrete and �nite while time is

continuous in these models, it is in general not possible to exactly replicate a semi-Markov process using a

Markov process with an expanded state space

1

. Semi-Markov models are useful when one wishes to model

1

Of course, a discrete-time semi-Markov process with bounded waiting times can always be converted to an equivalent

Markov model with an expanded state space by simply including waiting time in the modi�ed state space. However, even in
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Figure 2.3: A Semi-Markov Model description.

general information about durations within a system. A very good reference on semi-Markov models is

[

Howard, 1971, Vol. 2

]

.

The transition probabilities, a

s

i

;s

j

specify the probability of transitioning to state s

j

whenever a transition

initiates from state s

i

. In Figure 2.3, a

start up;heat up

= 0:8, a

start up;cool down

= 0:2, a

heat up;cool down

=

a

cool down;heat up

= 1, and a

s

i

;s

j

= 0 for all other s

i

; s

j

2 S. It is required that 0 � a

s

i

;s

j

� 1 and

P

s

j

a

s

i

;s

j

= 1. A transition from mode s

i

to itself is called a virtual transition (

[

Howard, 1971, Vol. 1,

Chapter 10

]

). Virtual transitions are permitted in the models here (i.e., a

s

i

;s

i

may be positive). When a

virtual transition occurs, the state does not change, but the time series may undergo a qualitative change

at that moment. For example, a sensor that linearly increases from state s

i

may experience a slope change

following a virtual transition from s

i

to s

i

.

In addition to transition probabilities, it is necessary to specify the initial occupancy distribution over S

at time t = 0 when the process is started. This is denoted by b

s

0

, the probability that the system is in state

s

i

at t = 0, for s

i

2 S. It is required that 0 � b

s

0

� 1 and

P

s

0

b

s

0

= 1. There is an implicit assumption

here that a state was indeed entered exactly at t = 0. When the starting moment is arbitrary, this may be

a bad assumption; however, for the sake of simplicity, it will be assumed throughout the remainder of this

thesis (although the assumption is quite easy to relax). When the starting moment is indeed arbitrary, it

may be desirable to replace b

s

0

by the steady-state occupancy distribution

2

. In Figure 2.3, b

start up

= 1,

b

heat up

= b

cool down

= 0.

The �nal components of the model are the waiting-time distributions, c

s

i

(�T ). For each state s

i

, an

arbitrary probability density function over �t 2 (0;1) may be speci�ed. It must be the case that 0 � c

s

i

(�t)

this case there may be computational advantages in certain types of problems for maintaining the semi-Markov representation.

See

[

Howard, 1971, Vol. 2, Chapter 10

]

for more details.

2

The steady-state occupancy distribution is uniquely de�ned when the semi-Markov model is ergodic, and is further a

function simply of the mean waiting times at each state, even if the waiting times themselves are arbitrary distributions. Again,

see

[

Howard, 1971

]

.
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and

R

c

s

i

(�t)d(�t) = 1. The segmentation algorithm developed in later chapters does not assume that the

distribution is in a known parametric form. The implementation of a distribution requires the distribution to

support the queries pdf(�t), cdf(�t), Variance(), and RandomVariate(), where pdf returns the probability

density, cdf returns the cumulative probability density, and RandomVariate returns a sample (a value for

�t) drawn independently and randomly from the distribution. It is also important that these queries can

be computed very e�ciently.

Often, one may wish to use a Gaussian waiting-time distribution, for example when it is known that

the waiting time is \about 1,000 seconds." However, the Gaussian distribution extends into �t � 0, and

so is not a possibility. There are two good alternatives to a Gaussian: A truncated Gaussian, and a

gamma distribution. The truncated Gaussian is simply a Gaussian distribution chopped o� at t = 0 and

normalized. A gamma distribution is a standard parametric distribution covered in any good statistics text.

It is parameterized by two real numbers, � > 0 and � > 0, and has the density

c(�t) =

e

��t=�

(�t)

��1

�

�

�(�)

for �t > 0. It has a mean of ��, a mode of maxf0; (� � 1)�g, and a variance of ��

2

. Special cases

include � = 1 (the exponential distribution with decay rate and mean 1=�), � even and � = 2 (chi-squared

distribution with �=2 degrees of freedom), and the limiting case � �!1 (the Gaussian distribution). When

� > 1, it is a right-skewed unimodal distribution (i.e., mode < mean) and a reasonable substitution when

one desires a Gaussian-like shape.

Waiting-time distributions can be generalized slightly to holding-time distributions, c

s

i

;s

j

(�t). A holding-

time distribution augments waiting-time distributions with a dependence on the target state of a transition.

The waiting-time distribution is obtained from the holding time distribution by c

s

i

(�t) =

P

s

j

c

s

i

;s

j

(�t)a

s

i

;s

j

.

Because notation is slightly simpli�ed and the extra dependence was not utilized in the applications studied,

only waiting-time distributions are used in the remainder of this thesis. The generalization to holding times

presents no conceptual challenge. In fact, the structural decomposition in Chapter 3 is une�ected by this

generalization, so the only real pragmatic di�erence is the increased complexity of notation. The issues of

convergence and mobility that are discussed in Chapters 4{6 may be e�ected by the precise choices of numer-

ical values, but not by any structural change created by using the more general holding-time distributions.

A semi-Markov model may be simulated as follows. At t = 0, select a state s

i

according to b

s

0

and

then select a waiting time �t

1

according to c

s

i

(�t

1

). After �t

1

time has elapsed, pick a state s

j

according

to a

s

i

;s

j

and transition to s

j

. Then pick a new waiting time, �t

2

according to c

s

j

(�t

2

) and remain in

state s

j

until another �t

2

time elapses. Repeat this process inde�nitely. The simulation of a semi-Markov

model produces a sequence of states and transition times. Methods for computing many of types inferences

concerning a semi-Markov process are given in

[

Howard, 1971

]

.

2.2.2 The Segmented Observation Model

At any given time in a time-series segmentation problem, the underlying state of the process generating

the time series is not directly observable. The observation model elucidates the relationship between the

underlying state and the time series that are actually observed. This section describes the observation model,

including the concept of shape recognizers and some of the issues that must be addressed to obtain a fully

meaningful model.

The right hand half of Figure 2.2 describes how the qualitative properties of the observed time series

depend on the underlying state. However, the description in that �gure is too qualitative. Time series

consist of streams of real numbers (sensor readings) | they are not provided in terms of the qualitative

shape descriptors. The observation model must precisely describe what constitutes a rapid increase, linear

decrease, or exponential decay.

The segmented observation model operationalizes the meanings of these qualitative shapes by way of

functions called shape recognizers. A shape recognizer, d

q

for shape q takes as input a time series X

v

for

sensor v and two time points, t

1

and t

2

. It returns a value, d

q

(X

v

; t

1

; t

2

) > 0, indicating the degree to which

the given time series in the interval from t

1

to t

2

is representative of the underlying shape q. The greater the
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Figure 2.4: A Time Series with Three Shape Recognizers: linear, concave, and convex.

value, the more representative the time series is. It must be that d

q

(X

v

; t

1

; t

2

) > 0, and it is often convenient

to enforce d

q

(X

v

; t

1

; t

2

) � 1 as well, so that d

q

= 1 indicates a perfect exemplar of q.

Consider the time series in Figure 2.4, and suppose there are three shape recognizers: d

linear

, d

concave

,

and d

convex

. In the interval from t

0

to t

1

, the time series is not very linear, so d

linear

(X; t

0

; t

1

) returns a

number close to zero. It is an even worse example of a concave shape, so d

concave

(X; t

0

; t

1

) is smaller still.

On the other hand, it is a very good example in that interval of a convex shape, so d

convex

(X; t

0

; t

1

) � 1.

We can also evaluate d

q

(X; t

0

; t

2

) for each of the three shapes. In this case, the signal within that interval

matches none of the shapes, so all three return small values when evaluated on that interval.

Notice that the time series on the interval [t

2

; t

3

] in Figure 2.4 is not a good representative of the linear

shape. Therefore, d

linear

(X; t

2

; t

3

) returns a small value. This highlights the di�erence between the seg-

mented observation model and more standard observation models found in the literature on hidden expanded

state Markov and hidden semi-Markov models (

[

Guedon, 1992

]

,

[

Russell and Moore, 1985

]

,

[

Levinson, 1986

]

,

[

Guedon and Cocozza-Thivent, 1990

]

,

[

Cook and Russell, 1986

]

,

[

Huang and Jack, 1989

]

,

[

Gupta et al.,

1987

]

). Classical observation models operate by sliding a small window over discrete time points in the

signal. In each window, an estimation of the properties in that window is made, and then (this is the

important part), the assumption is made that the properties of each window are independent of the other

windows once the underlying state is known. In the [t

2

; t

3

] interval of Figure 2.4, a classical technique for

judging linearity would judge that all but one of the small windows in that interval look extremely linear.

The single anomaly would be attributed to noise, and the overall linearity score would be high. It is only

by evaluating the segment over the entire interval that we can recognize that it is not a good exemplar of a

pure linear shape, one with a single qualitative characterization during the entire interval. The segmented

observation model is a new contribution of this thesis.

Consider how a shape recognizer evaluates the \goodness" of a time series within an interval. A shape

recognizer for linear shapes (regardless of the slope) operates, for example, by �tting a line to the data

within the given interval and computing the residual �. The mean squared error residual, equal to the sum

squared error divided by n� 2, where n is the number of data points in the interval and 2 is the number of

degrees of freedom when �tting a line, is used to achieve an invariance to the number of data points in the

interval. The shape recognizer then returns �e

���

, where 1=� is the expected residual when the shape really

is linear (this form was chosen for its simplicity but is otherwise arbitrary). The parameter � determines

the sensitivity of the recognizer to noise, a smaller � will return favorable scores even when the signal is

corrupted by a lot of noise or the �t is poor. A larger � will be much more stringent. Similar techniques can

be used for log-linear shapes (e.g., exponential increases or decays) by doing the same analysis after taking
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the logarithm of the sensor data

3

.

A problem that arises in the implementation of a shape recognizer is the problem of what to return

when there are an insu�cient number of data points to reasonably determine whether the data matches the

given shape. A linear shape requires at least two points in the interval to �t a line, and convex or concave

recognizers require at least three points. Additional points are required to obtain reasonable estimates

of residuals. However, d

q

(X

v

; t

i

; t

i+1

) must be de�ned on all intervals, whether or not data is present in

that interval. The speci�c way in which this is handled has been observed to have a signi�cant e�ect on

the evaluation of segmentations and, consequently, on the performance of the segmentation algorithm as a

whole.

In some domains, this sparse data problem can be ignored. For example, if the probability of a transition

lasting less than 1 minute is zero, and in any given minute at least 10 data points will always be observed,

then intervals with less than 10 data points are never relevant, and so it does not matter what is returned.

However, many cases, including the gamma distribution, allow arbitrarily short transitions with nonzero

probability. The precise evaluation when little or no data points are in an interval can arti�cially bias the

segmentation to prefer or avoid arbitrarily short transitions. Thus, it is usually important to handle the

situation with few data points appropriately.

A method that has been used in this work is the following. Suppose 1=� is the expected residual

when the underlying shape is really present. When there is an insu�cient number of points to compute a

residual, 1=� is returned. Otherwise, a weighted average of 1=� and (e.g.) �e

���

is returned, where the

average is weighted more and more towards the latter as the number of data points increases. This is easily

accomplished by using a straightforward Bayesian estimation of � with a Dirichlet prior. The Dirichlet prior

adds one additional parameter to the shape de�nition. In the thesis, this extra parameter was simply hard

coded (to 3), so that � was estimated as (3=�+ sum squared error)=(n� 2 + 3), where again, n� 2 is the

number of data points in the interval less the number of free parameters in the regression �t. In other words,

this is equivalent to pretending there are three additional points, all of which are at the expected residual,

that get averaged into the real data points. This (admittedly arbitrary) solution was su�cient to eliminate

obvious instances of undesirable segmentations resulting from sparse data, and therefore alleviated the need

to pursue a study of this problem further. It remains, however, a general problem that could bene�t from

the development of a more solid statistical foundation.

The formulation of shape recognizers is very general. Analysis within a single time interval could,

alternatively, be performed in the frequency domain, for example. This may be useful for characterizing

oscillations as shapes. There are some e�ciency concerns, however. The shape recognizers are called often

by the segmentation algorithm, so they must be relatively e�cient. Autoregressive moving average models

(ARMA) also form an interesting and natural class (

[

L�utkepohl, 1993

]

).

The shape recognizer functions, d

q

, serve to precisely specify the meaning of the qualitative shape labels

in Figure 2.2. The full speci�cation of the observation model is completed with the mapping from state to

shape for each sensor. Let sh(s

i

; v) be a function that returns the shape of sensor v from state s

i

. It is

allowed for several distinct states to map to the same shape. For notational convenience, it is convenient to

write d

s

i

(X

v

; t

1

; t

2

) as a shorthand for d

sh(s

i

;v)

(X

v

; t

1

; t

2

).

Putting the transition and observation models together, we obtain the complete Hidden Segmented

Semi-Markov Model. The HSSMM is thus de�ned by the four components:

a

s

i

;s

j

: Transition Probabilities

b

s

0

: Initial occupancy distribution

c

s

i

(�t) : Waiting-Time Distributions

d

s

i

(X

v

; t

1

; t

2

) : Shape Recognizers

With the time-series now modeled, the next section considers how this is to be used in the context of

time-series segmentation.

3

This works when the exponential curve asymptotes to zero. For example, such a characterization may be natural for stock

market data where investors are concerned with rate-of-return rather than absolute stock prices.
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2.2.3 k-Length Segmentations

A segmentation of length k is a listing of the �rst k states and the �rst k + 1 transition times:

� = ht

0

; s

0

; t

1

; s

1

; :::; s

k�1

; t

k

i

As discussed above, here it is always assumed that t

0

= 0. Each t

i

is a real value, and each s

i

2 S. These

transition times have no relation to the discrete times at which data is sampled.

The model described in the previous sections allows us to de�ne the \goodness" of individual segmen-

tations, and ultimately, the notion of an optimal segmentation. With a precise evaluation function, a

well-de�ned search task is therefore obtained, and the task of segmentation becomes one of optimization. In

this section, I discuss what makes a good evaluation function in time-series segmentation problems.

Data Fit

The shape recognizers of the previous section evaluate the \goodness" of a single segment in a time series.

We obtain an indication of how well the time series �ts a given segmentation by multiplying together the

evaluation (\goodness") of each individual segment for each sensor. Doing so yields

d(Xj�) =

k�1

Y

i=0

d

s

i

(X; t

i

; t

i+1

) =

k�1

Y

i=0

Y

v

d

s

i

(X

v

; t

i

; t

i+1

) (2.1)

where � is a k-length segmentation.

Trajectory Probability

The d(Xj�) metric indicates how well the observed data matches a given segmentation. The overall goodness

of a segmentation is not, however, solely a function of how well the segmentation �ts the data. It is also

important to consider the probability, P (�), that the particular sequence of state transitions would occur

if the model were simulated. This probability must take into account the probability of transitions (as

given by a

s

i

;s

j

) as well as the probability for the duration of each transition. Because time is continuous,

the \probability" of any precise state trajectory is typically zero, so P (�) must be a probability density.

However, densities are sensitive to time-scale distortions. In other words, if one distorts time in di�erent

ways, di�erent measures for density are obtained, and thus, di�erent criteria for measuring P (�). Alternative

density measures may be appropriate for di�erent tasks, and thus it is important to take care in selecting

an appropriate density measure for the segmentation task. To emphasize this point, consider the following

apparent paradox.

Example: A semi-Markov model consists of two states, s

1

and s

2

, with a

s

1

;s

2

= a

s

2

;s

1

= 0:9, and a

s

1

;s

1

=

a

s

2

;s

2

= 0:1. The waiting-time distribution in s

1

is bell-shaped with mean 1000 (seconds) and standard

deviation of 1.0. The waiting-time distribution in s

2

is also bell-shaped with mean 1000 but with standard

deviation 100.0. If the system is started in s

1

and run for 4 transitions, what is the most probable trajectory?

Most people would (intuitively) agree that the most probable trajectory alternates between s

1

and s

2

,

spending exactly 1000 seconds in each state. What is the probability (density) of this trajectory? The

obvious measure is:

P (�

1

) = c

s

1

(1000) � a

s

1

;s

2

� c

s

2

(1000) � a

s

2

;s

1

� c

s

1

(1000) � a

s

1

;s

2

� c

s

2

(1000) � a

s

2

;s

1

=

1

p

2�

� 0:9 �

1

100

p

2�

� 0:9 �

1

p

2�

� 0:9 �

1

100

p

2�

� 0:9

= 1:66� 10

�6

Compare this to the trajectory that repeatedly stays in state s

1

, each time for exactly 1000 seconds:

P (�

2

) = c

s

1

(1000) � a

s

1

;s

1

� c

s

1

(1000) � a

s

1

;s

1

� c

s

1

(1000) � a

s

1

;s

1

� c

s

1

(1000) � a

s

1

;s

1

=

1

p

2�

� 0:1 �

1

p

2�

� 0:1 �

1

p

2�

� 0:1 �

1

p

2�

� 0:1

= 2:53� 10

�6
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Hence the apparent paradox: the intuitively most probable trajectory is actually not the most probable.

In this case, the chances of the system staying in s

2

for exactly 1000 seconds (or for some arbitrarily close

amount to 1000 seconds) is so much less than the chances of it staying in s

1

for exactly 1000 seconds that

the trajectory that stays always in s

1

appears more probable.

The apparent paradox is a result of the particular choice of density used when computing P (�) above.

The density used in the example is certainly reasonable, but it is inappropriate for the segmentation problem

since it would introduce an unwanted bias on states with low-variance waiting times. For the segmentation

task, we do not want waiting time variances to in
uence trajectory probabilities as it did above. We do,

however, want the waiting-time distributions to in
uence trajectory probabilities, for a trajectory containing

a very unlikely transition duration (for example, excessively long) should be assigned a low probability.

Before identifying the appropriate density function for P (�), consider �rst the probability when time

is discrete. Let Pr(�) be the probability of the discrete-time parse, rather than the probability density.

Discrete-time distributions for waiting time are obtained by discretizing �t. Suppose we discretize by

dividing time into units of length � > 0 where � � 0. Then Pr(�tjs) = �c

s

(�t). In this case, a measure of

density is

P (�tjs) = lim

�!0

Pr(�tjs)=�

= c

s

(�t)

However, this is not the only possible way to de�ne density. Another possibility is to discretize the �t

in c

s

(�t) by discretizing units of standard deviation. Now let � � 0 be the number (fraction) of units of

standard deviation per discrete chunk of time. Here time is discretized di�erently for each state. Now,

Pr(�tjs

i

) = ��(c

s

i

)c

s

i

(�t), where �(c

s

i

) is the standard deviation of the waiting time distribution from s

i

.

As � ! 0, we again approach continuous time, but now the measure of density becomes

P (�tjs

i

) = lim

�!0

Pr(�tjs)=�

= �(c

s

i

)c

s

i

(�t)

This measure of density is clearly insensitive to di�erences in variance in waiting-time distribution, and

re
ects the rarity of a transition time rather than the absolute probability. The apparent paradox in the

above example does not appear with this choice of density | the trajectory that alternates states is indeed

the most likely, and in fact, it is exactly 9

4

times more likely than the trajectory that continually transitions

to the same state. There are an unlimited number of other possible densities that can legitimately be

identi�ed, but this is the one that appears appropriate for the segmentation task. Thus, the probability

(density) of a particular sequence of state transitions is given by

P (�) = b

s

0

k�1

Y

i=0

a

s

i+1

;s

i

�(c

s

i

)c

s

i

(t

i+1

� t

i

) (2.2)

where �(c

i

) is the standard deviation of the distribution c

s

i

(�).

Overall evaluation

The overall evaluation of a segmentation is the normalized product of data �t and trajectory probability,

given by

P (�jX) = �P (�)d(Xj�)

= �b

s

0

k�1

Y

i=0

a

s

i

;s

i+1

�(c

s

i

)c

s

i

(t

i+1

� t

i

)

Y

v

d

s

i

(X

v

; t

i

; t

i+1

) (2.3)

where � is a normalization constant equal to � = (

R

�

P (�)d(Xj�)d�)

�1

. The normalization constant depends

only on the HSSMM and the data, and so is a constant with respect to the space of possible parses. Because
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we are usually only interested in the relative goodness of segmentations (with the data and model �xed),

the normalization constant is optional and can be ignored if desired.

By interpreting d

s

i

(X

v

; t

i

; t

i+1

) as the probability of observing the dataX

v

[t

i

; t

i+1

] given that the process

is in state s

i

during the interval [t

i

; t

i+1

], the evaluation function in (2.3) is precisely what is obtained from

Bayes's rule. Our evaluation function is slightly more 
exible than this, however, since we do not absolutely

require d

s

i

(X

v

; t

i

; t

i+1

) to truly be a probability distribution

4

. Under the Bayes' rule interpretation, 1=�

is the probability of seeing the time series observed as determined by the model. We will adopt the inter-

pretation that d(Xj�) re
ects relative probability densities, such that d(Xj�

1

)=d(Xj�

2

) is the ratio of the

probability (density) of observing exactly data X given �

1

versus �

2

.

2.3 The Search Task

The metric P (�jX) provides an evaluation of a k-length segmentation given time-series data. A segmentation

�

1

is considered better than �

2

of the same lengthwhenever P (�

1

jX) > P (�

2

jX). I do not have a method to

compare segmentations of di�erent lengths. The segmentation task is de�ned in this section in such a way

so as to avoid the need to consider segmentations of di�ering lengths.

Let �

k

denote the space of all k-length segmentations, and let

�

�

k

= argmax

�2�

P (�jX) (2.4)

be the optimal k-length segmentation. The optimal segmentation is

�

�

= lim

k!1

�

�

k

This in�nite-length segmentation would not only segment existing data in the time series, but would also

predict the most likely future transitions. Even if prediction is not a concern, de�ning the optimal segmen-

tation without reference to k in a mathematically sound manner requires, in general, taking k to arbitrarily

large values. This is because an HSSMM may allow the possibility of an arbitrarily quick transition with

small probability. Therefore, even if the time series is short, �

1000

may contain a segmentation with very

rapid transitions that only covers half the data. The probability of 1; 000 rapid transitions may be minis-

cule, but positive probability nonetheless, and if the time-series data is su�ciently ill-behaved or the shape

recognizers su�ciently stringent, there is still a possibility that a segmentation with 1; 000 rapid transitions

may outperform all other 1; 000-length segmentations. As k increases, these rare cases become less and

less signi�cant, but the point remains that for any �nite k, all segmentations in �

k

are not guaranteed to

cover the time series

5

. It is for this reason that the mathematically sound rationale for de�ning the optimal

segmentation is in terms of the limit as k !1.

Pragmatically, however, we are not concerned with in�nite-length segmentations. A more down-to-earth

criteria is to �nd �

�

k

such that t

k

in �

�

k

is beyond the �nal time stamp in the time series. Intuitively, shortening

�

�

k

0

, k

0

> k, to the �rst k transitions is likely to yield �

�

k

. Thus, we can formalize the segmentation task as

follows:

Segmentation Task: Find �

�

k

= argmax

�2�

k

P (�jX) for some k such that t

k

in �

�

k

is greater than that

time stamp of any data point in the time series X.

4

When d

s

i

(X

v

; t

i

; t

i+1

) is really a probability density function, then integrating over all possible time series should yield

the value 1:0. Such an integral would require a measure � over the space of possible segmentation, but due to the fact that

certain shape recognizers e�ectively partition possible segmentations into equivalence classes, an appropriate de�nition for �

is anything but obvious. If a particular measure were adopted, then enforcing the integration to 1:0 would greatly complicate

implementation, and unnecessarily so, since there is really no reason that such a precise speci�cation is necessary. However,

there appears to be no problem in interpreting the ratios of d

s

i

(X; t

i

; t

i+1

)=d

s

j

(X; t

i

; t

i+1

) as re
ecting relatively probability

densities.

5

When there is a positive lower bound on the minimum possible transition time, then it would be possible to cast the

optimization task in terms of the space �

k

for some �nite k.
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The model-based segmentation task is now precisely de�ned as an optimization task. The space of possible

segmentations is, however, enormous. For example, �

100

is a 200-dimensional unbounded continuous space.

Without additional structure, searching such a space would be entirely infeasible. However, due to the

structure inherent in a HSSMM, the space of possible segmentations is highly structured, and it is possible

to take tremendous advantage of this structure to perform the optimization. The following chapters develop

an algorithm for performing this optimization.

2.4 Approaches to Segmentation (Literature Review)

There are many di�erent ways to approach the time-series segmentation problem, with an endless variety of

di�erent possible algorithms. Many of these potential directions have been explored in existing literature,

resulting in an enormous number of variations of algorithms for the segmentation problem. The time-

series segmentation problem also appears under the labels of the change-detection problem, detection of

(abrupt) structural change in time-series, switching regressions, and detection of nonstationarity of time-

series (note that nonstationary time-series are more general than time-series whose changes in stationary

properties is isolated to occasional abrupt points (

[

Lin and Ter�asvirta, 1994

]

)). It is also closely related to

intervention analysis (

[

Box and Tiao, 1975

]

,

[

Abraham, 1980

]

) where one tests for evidence of a change in

the characteristics of a time-series at a known time point where an intervention took place (for example,

when a new economic policy was adopted by the government). It di�ers from intervention analysis in that

in segmentation analysis, the time of the potential transition is unknown.

Existing algorithms can be compared or classi�ed among many possible dimensions. Two methods that

seem to be radically di�erent in most aspects may share a commonality in the technique used to solve one

particular subproblem, and because a number of distinct subproblems tend to arise, there are a large number

of ways to compare various techniques. An implementation may combine ideas from several techniques.

This section reviews some of the existing literature on time-series segmentation. A number of fundamental

approaches are reviewed, although these are not always mutually exclusive. The review in this section is by

no means comprehensive. It is intended simply to provide the reader with a broad picture of the various

techniques and fundamental ideas that have received signi�cant attention.

2.4.1 Sequential Sliding Window Techniques

The methods that would best be described as sequential sliding (or growing) window techniques comprise

the most frequently used and most extensively studied techniques for time-series segmentation. There are a

huge number of variations that fall within this category.

At the highest level, these algorithms function by considering a subset of the data, usually starting at

time t = 0, and successively examining data up to a further and further horizon into the future. At each

succession, the subset of data to that horizon is analyzed to detect whether a (single) transition has occurred.

When it is decided that a transition has occurred within that horizon, the actual time of the transition, t

�

, is

then localized and the whole process starts over at the beginning as if t

�

is now t = 0. Thus, one of the most

distinguishing aspects of these techniques is that once they detect and localize a transition, they commit to

that decision and continue from there.

In practice, algorithms that use these techniques often append additional techniques to alter previous

commitments, for example by utilizing clustering methods to combine one or more successive time intervals

found by a pure sequential technique into a single time interval (

[

Brandt, 1982

]

). The use of a post-

clustering method suggests over-segmenting initially, preferring methods that err on the side of detecting

extra transitions. Of course, the utilization of post-clustering methods is not unique to sequential windowing

techniques.

Sequential techniques typically fall into one of two categories (

[

Basseville, 1980b

]

,

[

Chu, 1995

]

): residual-

based methods (a.k.a., one-window methods), and two-window methods. Residual-based methods require

only a model of the signal before transition (such as linear), and then detect when the data deviate from

that model. Two-window methods require two models | corresponding to before and after the transition |

and use these in concert to detect the transition. A variant of two-window methods that is somewhat closer

to residual-based methods in spirit leaves the second model unspeci�ed, but detects deviations in shape by
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// Time series to be segmented is X[m::n] = f(t

i

; x

i

) : i = m; :::; n and t

i

< t

i+1

g

L = 2; // Line fitting has 2 free parameters.

i = m;

j = i + L;

k = 1;

while (j <= n) f // Evaluate Window X[i::j]

` = BestFitLine(X[i::j]);

� = AveResidualPerPoint(`;X[i::j]);

++j;

if (� > threshold) f

tr[k+ +] = i = LocalizeTransition(X[i::j]);

j = i+ L;

g

g

// Transition times are returned in array tr[1::k].

Figure 2.5: A simple residual-based algorithm to segment a time series into piecewise-linear segments

using errors in predictions on the second window based on the �t obtained to data in the �rst window. These

are reviewed separately below as prediction-based methods.

Residual-Based Methods

As an example, Figure 2.5 describes a residual-based algorithm to segment a time series into piecewise-

linear segments. The main idea is simply to grow a single window anchored at the beginning of the time

series until a transition is found. At each window size, the residual of the best �t line is computed

(AveResidualPerPoint is the cumulative residual divided by the number of points), and a transition is

detected when the average residual per point over that interval exceeds a prespeci�ed threshold. After a

transition has been detected, the actual time of the transition must be localized since a large residual in-

dicates only that the transition occurs somewhere within the window, but does not indicate exactly where

the change occurs. Once a transition (also called a change point in the literature) is determined, the entire

process is repeated using only the time-series data from the most recent change point forward (i.e., anchoring

the left edge of the window to the most recently determined change point).

Almost all residual-based algorithms are variations on the algorithm in Figure 2.5; however, many of

these variations have been studied in excruciating depth. I will review each of these variations in turn.

The �rst possible variation on residual-based methods is the choice of the within-segment process model.

The algorithm in Figure 2.5 �nds the best �t line, but of course BestFitLine can be replaced by virtually any

process model. Normally a maximum likelihood criteria is used as the basis for �tting the free parameters

of the model to the data (in the line �tting case, the free parameters were slope and intercept). Recall that

the problem of �tting an order-p polynomial to data is an instance of linear regression since the independent

variables can be taken to be x = hx; x

2

; x

3

; :::; x

p

i such that y = m � x + b (where m is a vector). Residual-

based segmentation methods based on linear regression are developed or used in

[

Inselman and Arsenal, 1968,

Brown et al., 1975, Ferreira, 1975, Sen, 1983, Dufour, 1982

]

. Some of the most popular and powerful classes

of process models in the modern literature are the stable autoregressive moving average process models (

[

Box

and Jenkins, 1976, Kotz et al., 1982, Makhoul, 1975, L�utkepohl, 1993

]

). Papers that develop residual-

based segmentation algorithms based on the assumption that each segment behaves like a stationary stable

autoregressive process include

[

Segen and Sanderson, 1980

]

and

[

Basseville, 1980b

]

.

A second variation to the basic algorithm is that the average residual measure can be replaced by di�erent
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test statistics. Although a natural metric, mean residual per point has a number of drawbacks. Detecting

a small change in mean requires a large window, but large windows cause detection of large changes in

average residual to be delayed, requiring more data after the change before they can be detected (

[

Page,

1954

]

). Furthermore, it is di�cult to assess the signi�cance of a departure of this measure from zero (

[

Brown

et al., 1975, pg. 151

]

). This latter point is of interest since it is preferable to base the detection criteria

on a signi�cance level rather than some arbitrary (and hard to interpret) threshold. In fact, the problem

of measuring signi�cance, and of determining the power of a statistical test, has probably received more

attention in the statistics and economic literature than any other aspect of time-series segmentation. To

address these concerns, a number of di�erent test statistics have been studied in the literature. In many

cases, statistical signi�cance tests and/or assessments of the power of the statistics have been derived.

Statisticians prefer to set a signi�cance level, �, for the probability of making a Type I error, in this

case, the probability of detecting a transition that is not really there (the null hypothesis being that the

data is generated from a single process model), and then detecting transitions based on this signi�cance

level. This essentially amounts to using a more principled basis for setting the threshold in Figure 2.5. A

survey of some tests appears in

[

Zacks, 1983

]

. Because \experience has shown that ... the plot of ordinary

least squares residuals, or the plot of their squares, against time is not a very sensitive indicator of small

or gradual changes in [slope]"

[

Brown et al., 1975, pg. 151

]

, it is standard practice to base signi�cance tests

on cumulative sums (cusums) of residuals or squared residuals (

[

Page, 1954

]

,

[

Barnard, 1959

]

). However,

the mathematical form of a cumulative sum of residuals (or cusum of squared residuals) is quite nasty and

does not allow any straightforward derivation of standard statistical tests (although

[

Ploberger and Kr�amer,

1992

]

does develop a test based on ordinary residuals). For this reason, it is more common to use cusums of

recursive residuals, where a squared recursive residual at time t is de�ned to be

w

2

t

= S

t

� S

t�1

S

t

is the cusum of squared residuals for the best �t line through the points up to time t (

[

Brown et al., 1975

]

).

When standard residuals are independent and distributed normally with mean zero and variance �

2

(under

the null hypothesis that all data is generated from a line), then the recursive residuals are also independent

and distributed normally with mean zero and variance �

2

, and in addition, the recursive residuals have nice

mathematical properties

6

. These have lead to reasonable statistical tests for detecting transitions (

[

Brown

et al., 1975, Bauer and Hackl, 1978, Sen, 1983

]

).

A third variation to the algorithm is the choice of method for localizing the time of a transition. This is

often referred to as the change-point localization problem. The detection of a transition by a residual-based

method does not provide much information about where the transition occurs other than that it occurs

somewhere within the window being examined. Thus, after detection, it is usually necessary to localize the

time of the transition. Typically, this is done by employing a two-window method (described below under

\two-window methods"). For example, after detection that a transition occurs between t = 1 and t = T ,

[

Brown et al., 1975

]

apply Quandt's log-likelihood ratio (

[

Quandt, 1958

]

,

[

Quandt, 1960

]

) to every pair of

windows ([1::r]; [r+ 1::T ]), as r varies from 1 + L to T � L (where L is the number of points necessary to

apply the metric and is based on the number of free parameters in the regression). The value of r that

minimizes the metric taken as the transition time.

Finally, a fourth variation to the algorithm is the windowing technique. In the algorithm displayed in

Figure 2.5, the window is anchored at the latest determined transition point and grown forward in time.

The other popular variation is to slide a �xed-width window forward in time. An increasing window size

can cause problems for metrics such as cumulative (or average) residual since large changes will have less

e�ect as the window grows (

[

Page, 1954

]

). A �xed-width sliding window does not have this problem, but

introduces the extra problem of selecting a window width. A sliding window must be smaller than the time

scale of transitions, yet large enough to have the power to detect transitions.

The big advantage of residual-based methods is that the technique requires only a model of the behavior

within a segment (i.e., before a transition) in order to detect a transition. In comparison, two-window

methods also require a model of the signal behavior after the transition. The main drawback is a lack

of power to detect certain kinds of changes.

[

Kr�amer et al., 1988, pg. 1362

]

say: \If structural change is

6

Speci�cally, the covariance between successive cusums has a manageable mathematical form.
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1st Reference Window 1st Test Window
2nd Test Window

3rd Test Window
2nd Reference Window
3rd Reference Window ...

(a)

(growing) (sliding)

1st Test Window
2nd Test Window

3rd Test Window...
(b)

Reference Window
Reference Window
Reference Window

(fixed) (sliding)

.

1st Test Window
2nd Test Window
3rd Test Window..

Reference Window
Reference Window
Reference Window

(fixed)

(c)

(growing)

Reference Window: Whole Sample

.

1st Test Window
2nd Test Window
3rd Test Window.. (growing)

Last Test Window

(d)
1st Reference Window 1st Test Window

2nd Test Window
3rd Test Window

2nd Reference Window
3rd Reference Window ...(growing)

(fixed)

(e)

(shrinking)

Last Reference Window Last Test Window

Figure 2.6: Methods for selecting reference and test windows in a two-window method. Diagram taken in

part from

[

Chu, 1995

]

.

orthogonal to the regressors or occurs rather late in the sample period, no version of the cusum test will

detect it." In general, additional modeling information, when available, has the potential to increase the

power of segmentation methods.

Two-Window Methods

Two-window methods are generally more powerful than residual-based methods. The extra power comes at

the cost of requiring two models: A reference model for the signal before the transition, and a test model for

the signal after the transition. The methods operate by measuring the di�erences between the two models,

i.e., comparing the probability the data was produced from a single reference model versus the probability

the data was produced by the �rst model up to time r, and then by a second model from then on.

Two-window methods operate by maintaining two windows, called the reference window and the test

window, over the time-series. The methods then consider the hypothesis that the data is generated by the

reference model inside the reference window and is then generated by the test model inside the test window.

Two fundamental issues underlie two-window methods: how to select the reference and test windows,

and how to measure the di�erences between the two models.

There are several reasonable ways to select the reference and test windows. For example,

[

Appel and

Brandt, 1983

]

,

[

Basseville and Benveniste, 1983

]

, and

[

Chu, 1995

]

grow the reference window, as was done

with the window in Figure 2.5, and then append a �xed-width test window at the end of the reference window.

As the reference window grows, the test window slides. This is depicted in Figure 2.6(a). Alternatively,

[

Bodenstein and Praetorius, 1977, Ishii et al., 1979, Ishii et al., 1980

]

and

[

Chu, 1995

]

7

use a �xed width

stationary reference window and slide a �xed-width test window forward in time as in Figure 2.6(b).

[

Appel

and Brandt, 1983

]

also utilize the scheme in Figure 2.6(c) where the reference window is �xed and stationary

and the test window is grown. This is used by

[

Appel and Brandt, 1983

]

in iteration with that of Figure 2.6(b)

only during their change point localization optimization. However, the combination could be used in a

7

[

Chu, 1995

]

analyzes both of the techniques shown in Figure 2.6(a) and 2.6(b).
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spirit closer to that of a residual-based method, where the test window plays the role of the residual-based

method's window, but where the ability to detect a deviation is enhanced by the information obtained

from within the test window. The scheme depicted in Figure 2.6(d) is used by

[

Ploberger et al., 1989

]

.

Finally, Figure 2.6(e) depicts the con�guration where the reference window is successively grown while the

test window is simultaneously shrunk. As was brie
y mentioned in the previous subsection,

[

Brown et al.,

1975

]

use this scheme to perform the change-point localization. In fact, this is the most natural scheme for

change-point localization, and even techniques (e.g.,

[

Appel and Brandt, 1983

]

) that use one of the other

window management techniques to detect a transition may make use of this scheme to localize the time of

the transition. In addition to localization uses,

[

Deshayes and Picard, 1986

]

and

[

Andrews, 1993

]

use this

scheme in a straight two-windows approach.

Two-window sequential segmentation methods initially anchor the reference window to t = 0 and

grow/slide the reference and test windows around using one of the schemes of Figure 2.6 until a transi-

tion is detected. After a transition detected, the time of the transition is localized (note that in the schemes

of Figure 2.6(b-d), the time of the transition is not obvious), and the anchor is moved to this new location

and the whole process repeated. Again, a single transition is detected at a time, and once found, sequential

techniques permanently commit to that transition time. It should also be pointed out that the window

management techniques of Figure 2.6(a-c) are readily applicable to an implementation where segmentation

occurs while data arrives incrementally, while techniques 2.6(d-e) are only applicable to a batch scenario

where all the data is available in advance (they are also quite useful for change-point localization, as noted

above).

Once window positions have been selected, the di�erence between the models in the two windows must

be measured. There is a plethora of possible measures that have been proposed for this task. The earliest

was the Quandt's log-likelihood ratio (

[

Quandt, 1958

]

,

[

Quandt, 1960

]

). First, a measure of the data �t

assuming that no transition occurs is obtained by �tting the reference model to the data in both windows.

Next, a measure of the data �t assuming that the data in the reference window was produced by the

reference, while the data in the test window was produced by the test process, is obtained by �tting the

reference model to the data in (only) the reference window, and �tting the test model to the data in

the test window. Quandt's criteria takes the log of the ratio between the probability of the observations

given the single model to the probability of the observations given two models. A small value of this

metric indicates a transition. The distribution, and therefore a statistical test for this metric is derived

in

[

Andrews, 1993

]

. This full procedure is repeated for every possible transition time considered.

[

Appel

and Brandt, 1983

]

generalize this to autoregressive processes. The likelihood-ratio is very computationally

intensive (

[

Basseville, 1980a

]

), and problems may arise near the edges when one window contains very little

data (

[

Deshayes and Picard, 1986

]

,

[

Basseville, 1980b

]

). A wide variety of other statistics have been proposed,

in many cases in an attempt to approximate the likelihood ratio with less computation, but in some cases

based on other motivations (

[

Bodenstein and Praetorius, 1977, Sen, 1980, Basseville and Benveniste, 1983,

Hawkins, 1987, Ishii et al., 1979, Ploberger et al., 1989, Andrews, 1993

]

). A review of tests for changes in

the parameters of linear regression, along with a categorization of the types of changes that can be detected

and the appropriate corresponding statistical tests, is given in

[

Pesaran et al., 1985

]

.

As was the case with residual-based methods, the choice of model class for each window arises with

two-window methods as well. For example, using linear models (�tting best �t lines in each window) an

algorithm can detect a change in the slope of the data (e.g.,

[

Sen, 1980

]

). However, the Autoregressive

Moving Average (ARMA) models again are among the most popular. Notable papers that develop or use

two-window ARMA models include

[

Basseville, 1980b, Appel and Brandt, 1983, Chu, 1995

]

.

Prediction-Based Methods

Another sequential two-window approach is to �t a model in a reference window, and then compare the

predictions made by that model over a test window. Like two-window techniques, this requires the man-

agement of both a reference and a test window, but like the residual-based methods, only one model is �t.

[

Pesaran et al., 1985

]

reviews prediction-based statistical tests for detecting changes in linear regression mod-

els. Methods for autoregressive and ARMA models are developed in

[

Box and Tiao, 1976, L�utkepohl, 1988,

L�utkepohl, 1989

]

,

[

L�utkepohl, 1993, Sections 4.6 and 11.4.3

]

, and references therein.

[

L�utkepohl, 1988,

pg. 268

]

claims that \one advantage of this approach is that only a few data points are needed after the time
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point or period where the [transition] is suspected. ... Another practical advantage is that no hypothesis

is required on the precise form of structural change." However, \changes in the model of di�erent kinds

may not be easily distinguishable"

[

Box and Tiao, 1976

]

, and in reality assumptions about the nature of the

change are required. For example, a change in variance will go undetected if one is only comparing the mean

error between forecast and data. Statistical tests exist for detecting a change in variance (

[

Pesaran et al.,

1985

]

), but the choice to invoke such a test implicitly assumes something about the nature of the change.

Therefore, it is reasonable to view prediction-based models as a special case of two-window methods.

2.4.2 Transition Recognition Methods

The window-based techniques of the previous section detect a transition by comparing the goodness of �t

of data within one or more intervals of time. An alternative is to directly recognize salient characteristics of

transition points without paying much attention to the uniformity of data characteristics between transitions.

Often the local extrema and in
ection points in the graph of a function correspond to our own intuitions

about where abrupt transitions seem to occur. There are points where the �rst or second derivative of a

function with respect to time are zero. Therefore, one approach is to �nd time points where the �rst or

second derivative of the data with respect to time is zero. Generally this requires smoothing the data �rst.

Another approach to recognize transitions directly is to train a neural net to recognize transitions as a

function of a window of data surround a possible transition, or in the case of a recurrent neural net, as a

function of some signal history. Again, the salient characteristic is that the recognition of the transition is

based on the shape of the signal at the transition (e.g., bend/kink recognition, etc) rather than on a change

in the uniformity of some signal parameter over a time interval.

Domain-Dependent Transitions

A system for segmenting an acoustic waveform of spoken digits so that digits can then be individually

recognized is developed in

[

Rabiner and Sambur, 1976

]

. They note a number of characteristics speci�c to

this domain ([ibid p.171{2]):

1. \An interval of unvoiced speech or silence ... denotes the beginning or end of a digit, i.e., there are no

internal unvoiced or silent regions within the 10 digits (0-9)."

2. \Local minima of the energy contour ... are strong indications of digit boundaries."

They train a classi�er to classify each 10 millisecond interval as either voiced, unvoiced, or silence. Then

based on these labels, the design a number of rules to recognize digit boundaries directly. In this application,

success was possible because of domain-dependent properties of transitions that were identi�ed.

Scale-Space Filtering

Scale-space �ltering (

[

Witkin, 1983

]

) is a technique to recognize and classify in
ection points at di�erent

time resolutions. Generally, a signal must be smoothed before it is possible to identify in
ection points. This

may be because data points occur only at discrete times, so that smoothing has the e�ect of turning the

time-series into a continuous time series, or because discontinuities exist in the underlying continuous-time

function. Smoothing of data is generally accomplished by convolving the time series with a Gaussian signal.

The amount of smoothing that is actually obtained depends on the variance of the Gaussian used. A larger

variance results in a smoother signal with fewer in
ection points.

Smoothing introduces two e�ects: qualitative simpli�cation (e.g., the removal of in
ection points) and

spatial distortion (shifts in the actual time-position of in
ection points). The technique of scale-space

�ltering (a) prioritizes in
ection points | those that appear at coarser smoothings are considered to be

more signi�cant transition points, and (b) localizes the actual time of a transition (removes shifts that result

from smoothing). The original paper,

[

Witkin, 1983

]

, is a very good exposition of the technique.
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Neural-Net Recognition

In some domains, a reasonably precise description of the features of a transition may be possible, as is the

case in the above examples. However, in other domains, even though a transition may have highly salient

features, knowing exactly how to describe these features may be di�cult. For these, one approach is to

train a time-delay neural network to recognize the salient features that de�ne a transition. A window of

time-series data is fed into the neural network, and the network outputs 1 if it is a transition, 0 otherwise

(or perhaps a grade between 0 and 1 if it is uncertain).

In the digit recognition task of

[

Rabiner and Sambur, 1976

]

, some parameters of the feature recognizer

were tuned from training data. In this sense, that system already resembles such a system. However, the

transition characteristics there were largely already de�ned and the parameter adjustment was more of a

�ne tuning.

In speech recognition, certain stop constant-phonemes provide a certain natural transition point. These

are phonemes such as /b d g k p t/, usually consisting of closure, explosion, and aspiration phases. Not all

phoneme boundaries are delineated by stop-constants, but for some tasks these may represent a reasonable

marking of transitions within a stream of continuous speech. Time-delay neural networks have been trained

to recognize stop-constant phonemes by

[

Hampshire and Waibel, 1990, Waibel et al., 1989

]

.

Although the basic idea is rather obvious, other examples of neural-bet transition-recognition methods

seem to be rare in the literature. This may simply be an underexplored area, or it may be an indication

that domains with salient transition features are uncommon.

2.4.3 Clustering and Labeling Techniques

Labeling techniques provide a fairly crude method for detecting transitions and obtaining very rough esti-

mates or constraints on the transition times. They are often used in combination with other techniques, for

example to simplify the problem the other technique has to solve.

The idea behind labeling techniques is simply to abstract the signal from a real-valued time series into a

string of labels. The time-series is partitioned into �xed-sized windows, and then each window is classi�ed

and assigned a label. A change in label may indicate a transition, or some combination of rules based on

the label assignments can be used to identify transitions (see Section 2.4.6). However, the precise time of

the transition is typically under-speci�ed since it is usually only known to occur somewhere within the two

windows surrounding a label change.

The two issues behind labeling techniques are how to use the labels to perform the segmentation, and

how to produce or learn to produce the labels. Learning to label segments of time series is an unsupervised

learning problem.

One method for labeling a signal is to use a hierarchical clustering algorithm.

[

Lee and Chou, 1989

]

compute the dispersion of an ARMA process within each window, and then apply a hierarchical clustering

algorithm to assign labels. A change in labels indicates a change point and provides rough constraints on the

time of the change point. They then apply a dynamic programming algorithm (Section 2.4.5) to precisely

localize the transition times. The technique is applied in

[

Lee and Chou, 1990

]

to segment phonocardiograms

(PCGs) for use in the diagnosis of heart ailments.

2.4.4 Gated Experts

Approaches in this category are based on various competitive neural-net architectures where subnetworks

compete for segments of the signal. Once a mapping from subnetworks to data points is established, this

mapping partitions the time series into segments. This type of approach is in many ways an example of

a clustering or labelling technique, but the methods used appear somewhat di�erent to other variations of

clustering.

Competitive neural net training is employed by

[

Pawelzik et al., 1996

]

to learn signal shapes that can be

used to assign labels to windows in a labeling scheme. Using the assumption that transitions occur rarely,

so that adjacent data points belong with high probability to the same class, they are able to train a radial

basis net of the type studied by

[

Moody and Darken, 1989

]

so that distinct neurons respond to distinct signal

shapes. A similar approach is taken by

[

Kohlmorgen et al., 1994

]

and

[

Weigend et al., 1995

]

using an adaptive
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mixture of local experts network (

[

Jacobs et al., 1991

]

, also called measure �elds by

[

Marroquin, 1995

]

). In

this approach, the neural network is competitively trained to map each data point of the time-series to a

subnetwork. When applied to segmentation (

[

Kohlmorgen et al., 1994

]

), a bias is necessary to encourage the

assignment of adjacent points to the same subnetwork.

2.4.5 Dynamic Programming Methods

Instead of detecting transitions one at a time and then committing to those choices, as is done with sequential

segmentation techniques, dynamic programming approaches o�er reasonable methods for optimizing over

all transitions in a time series simultaneously. The technique as applied to time-series segmentation appears

earliest in

[

Bellman and Roth, 1969

]

.

Suppose g(t) is a piece-wise stationary signal consisting of N segments, where g

i

(t) is the segment from

time t

i�1

to t

i

, i = 1; ::; N , and where each linear segment has been �t to the data within that segment. It is

desired to �nd the best-�t piece-wise stationary signal from some class of piece-wise stationary signals over

the time interval [t

0

::t

N

], where t

0

and t

N

are given, and t

i

for 0 < i < N are to be determined.

Let error(g; t

i

; t

j

) be a measure of the di�erence between g(t) and the actual time series between times t

i

and t

j

. This might be the cumulative residual, cumulative squared residual, or the sum of maximumdeviation

on each segment, for example. Assume that whatever the error function, it is obtained by summing the error

on each individual segment, so that

error(g; t

0

; t

i

) = error(g; t

0

; t

i�1

) + error(g

i

; t

i�1

; t

i

)

In the spirit of dynamic programming, let F

i

(t

i

) be the error of the best �t i-segment curve between

time t

0

and time t

i

with the �nal endpoint of the i

th

segment occurring at time t

i

. F

i

can be written as the

recurrence

F

i

(t

i

) = min

0<t

i�1

<t

i

�

F

i�1

(t

i�1

) + min

g

i

error(g

i

; t

i�1

; t

i

)

�

(2.5)

The dynamic programming algorithm begins by computing F

1

(t

1

) for all possible values of t

1

by simply

�tting the curve to the data in [t

0

::t

1

]. Once F

1

is computed, then F

2

(t

2

) is computed for all possible values

of t

2

using (2.5). This is repeated until �nally F

N

(t

N

) is computed, but in the �nal case, it need only be

computed for the known t

N

.

To implement this algorithm, time must be discretized. Once discretized, F

i

(t

i

) can be stored as an array

where t

i

takes on only a �nite number of possible values.

[

Bellman and Roth, 1969

]

impose a uniformly

spaced grid.

The algorithm as shown does not impose the requirement that the �tted curve be continuous at transition

points. This extra condition is accommodated by including the y value of the curve at each transition point

in F

i

(t

i

; y

i

), the error of the best �t i-segment curve ending at the point (t

i

; y

i

). F

i

(t

i

; y

i

) is now a two-

dimensional array, and the y dimension must also be discretized. The algorithm is given in

[

Bellman and

Roth, 1969

]

.

Many variations of the dynamic programming approach are possible. First of all, many variations on

the error measure used above are easily accommodated. Other techniques can be applied as a preprocessing

step to narrow the range of possible transition times and/or the set of possible within-segment shapes in

order to streamline the dynamic programming optimization step. For example,

[

Lee and Chou, 1989

]

apply

a hierarchical clustering method (see Section 2.4.3) to identify the number of change points, constrain their

locations, and determine the best �t segment. This essentially eliminates the minimization in (2.5) over g

i

and reduces the range for t

i

to a small (two-window) region.

The basic dynamic programming algorithm above assumes the number of segments is known. In most

situations, the number of segments is not known and must also be estimated. Estimating the number of

segments is complicated by an over-�tting problem | a greater number of segments always results in a

better data �t, while a good segmentation keeps the number of segments to a minimum. A minimum

description length principle (

[

Rissanen, 1978

]

,

[

Rissanen, 1986

]

) can be easily incorporated into the dynamic

programmingalgorithmto determine a good number of segments. One simply computes F

i

up to a su�ciently

large i, and then applies the MDL criterion to each i to �nd the best length. An approach using a measure

very similar to Rissanen's information measure to choose the number of segments in a piece-wise polynomial
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regression problem appears in

[

Brailovsky, 1992

]

. The Vapnik-Chervonenkis dimension of the piece-wise

polynomial regression problem is derived in

[

Brailovsky and Kempner, 1992

]

.

Dynamic programming is applied to a Bayesian formulation of the problem in

[

Djuri�c et al., 1992

]

, where

a prior distribution (essentially a uniform prior over all k-length segmentations) is speci�ed, and a goodness

of �t given a particular segmentation has the form of a product of data �t on each individual segment (note

that this is the form in Equation (2.1)). They are able to express the maximum a posteriori parse in a

(very complex) dynamic programming form. The paper uses an autoregressive model for each segment.

The Bayesian formulation is similar to the formulation in this thesis, but the prior used in that work is not

adjustable.

[

Ostendorf and Roukos, 1989

]

segment speech to phonemes using dynamic programming on a

fairly simple Bayesian formulation.

2.4.6 Model-Driven Methods

Model-driven methods take as input, in addition to the time-series data, a formal model describing the

evolution of the time series or the process underlying it. A segmentation algorithm then attempts to �nd the

interpretation (i.e., segmentation) with maximal agreement to the model. Model-based approaches overlap

many of the already discussed literature, and often deciding whether a given work should be called model-

based is a grey area. Almost every algorithm has parameters that must be set, and sometimes reasonable

arguments can be made that the parameters settings used are modeling a speci�c process even when it might

not be immediately obvious from the outset. The most distinctive characteristic of a model-based method is,

therefore, not so much in the end result, but rather, in the approach used to get there. In these approaches

one typically concentrates on encoding (or learning) domain-speci�c knowledge about the time series or its

underlying process prior to applying the algorithm to actual time-series segmentation tasks of interest.

Several model-based methods utilize probabilistic models, including the methods of this thesis. The

speci�c form of the probabilistic may vary considerably, but generally these models implicitly encode a

distribution over the possible segmentations given time-series data, and the algorithm's task is to �nd the

most probable segmentation given the data (called the maximum a posteriori (MAP) segmentation).

A good example of a probabilistic approach is

[

Sclove, 1983

]

. In this paper, a time-series is modeled

as a Hidden Markov Model (HMM). At any moment, a time-series is considered to be in one of n possible

states. Time is modeled discretely, such that at synchronous points in time, transitions between states occur

according to prespeci�ed transition probabilities. Typically there is a rather high probability of staying in

the same state. At each synchronous instant, a data point for the time-series is generated according to a

distribution conditioned only on the current state. With a HMM model of this form, a Viterbi algorithm

(

[

Forney, 1973

]

) can be applied to �nd the most likely segmentation. (Note that the Viterbi algorithm is a

dynamic programming algorithm, highlighting a connection to the dynamic programming methods reviewed

in Section 2.4.5.) Those transitions from a state to itself are �ltered out, and all transitions where the state

actually changes are the points where transitions occur.

The time-series segmentation formulation in

[

Sclove, 1983

]

bears a distinct similarity to speech recognition

methods based on HMMs (see e.g.,

[

Rabiner, 1989

]

). Clearly, segmentation (into phonemes or words) is an

intrinsic part of speech recognition, so this is not surprising. With such an connection, many of the speech

recognition methods could also be considered model-based segmentation methods. However, due to the size

of that literature, I do not review that literature from that perspective here. Many of the relevant references

are already cited elsewhere in this thesis in speci�c contexts.

The use of an HMM-based method has certain limitations. The model itself encodes some very strong

assumptions about the nature of the time-series process | most speci�cally, that the process is Markovian.

Individual data points within the time series are independent of each other given the underlying state.

This means that even when two points occur within the same state, there is little opportunity to model

additional regularity between those points. Also, transitions are Markovian, so that state durations can only

be modeled as geometric (i.e., exponential) distributions. This is again quite limiting in many cases. The

latter limitation has been addressed by a number of works in speech recognition, for example, by utilizing

Hidden semi-Markov models (HSMMs). A good review of these methods is

[

Guedon, 1992

]

.

The HSSMM introduced in this chapter is yet a further generalization of HSMMs, where the segmented

observation process eliminates the limitation that points within the same state be independent given the
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state.

Non-probabilistic model-based approaches are possible as well, although due to the abductive nature

of segmentation, there can be conceptual di�culties that don't arise with a probabilistic MAP approach.

Waveform parsing systems (

[

Cox et al., 1972, Stockman et al., 1976, Stockman, 1982

]

) are one such example

of a non-probabilistic model-based method. These approaches even have roots in the HEARSAY speech

recognition system

[

Reddy et al., 1973

]

. In waveform parsing systems, the time-series is described by a

Chomsky-style grammar. The waveform itself must be preprocessed to convert the series into a symbolic

series, i.e., a string, with each \letter" denoting a localized shape such as CUP, CAP or S-TURN

[

Stockman,

1982

]

. Segmentation is then a parsing task. Although waveform parsing systems have been pursued quite

seriously, it does have several obvious downsides. First, the technique itself does not address the potentially

di�cult step of symbolizing the time series (which itself could be considered a segmentation task in some

cases). Second, ambiguities (multiple possible parses) are possible, but the technique itself provides no basis

for choosing between these. And �nally, noise in the process or the symbolization step can create signi�cant

di�culties.

2.5 Summary

Time-series segmentation is the task of �nding points in time where abrupt qualitative changes occur in

a signal. The model-based approach developed in this chapter assumes that expectations in the form of

knowledge about states, durations, transitions, signal shapes within a state, and associated uncertainties in

all these are known in advance. This knowledge about the time series is encoded as a Hidden Segmented

Semi-Markov Model, a formal time-series model developed in Section 2.2. The segmented observation part

of the HSSMM is novel, while the transition portion utilizes a semi-Markov model. The segmentation task

becomes one of �nding the most probable segmentation given the time-series data. Subsequent chapters

consider the algorithms for �nding this most probable segmentation.



Chapter 3

Structural Decomposition

Chapter 2 formulated the time-series segmentation problem as an optimization task over the space of possible

segmentations. Although enormous, the space of possible segmentations is highly structured. By utilizing

this structure the search task can be decomposed into several smaller search tasks, and thus greatly simpli�ed.

The ability to take advantage of structure is key to most large inference problems. The methodology

used in this chapter to decompose the time series segmentation problem is quite general and can be applied

similarly to a wide variety of inference and estimation problems to obtain, in a very systematic fashion, an

e�cient algorithm from a given problem formulation. It is often even more useful for guiding the formulation

of a problem in the �rst place, since many of the tradeo�s between structural assumptions and e�ciency are

made explicit.

The method in this chapter is rooted in the theory of graphical Markov �elds (

[

Lauritzen et al., 1984

]

,

[

Lauritzen and Spiegelhalter, 1988

]

). The theory is not new to this thesis and has been applied to many

applications in the literature (

[

Heckerman et al., 1995

]

,

[

Noormohammadian and Oppel, 1993

]

). However,

the generality of the theory is often under-appreciated. For example, most existing statistical estimation and

inference algorithms that utilize conditional independence to simplify a large problem, but otherwise solve

the problem exactly, fall out automatically as special cases by applying the methodology to their speci�c

problem formulations (

[

Smyth et al., 1996, Levy et al., 1996

]

). While most such algorithms have been

developed without (explicit) recourse to graphical Markov �eld theory, there is little doubt that familiarity

with and use of the theory would have, in most cases, expedited the development of the algorithms by

reducing the reliance on creative inspiration. In short, it is a very useful methodology to have in one's

toolkit.

Section 3.1 demonstrates the methodology by decomposing the problem of �nding the optimal k-length

segmentation for a given k. It is also shown in Section 3.1.3 how to decompose the computation of marginal

posterior probabilities, such as computing the posterior probability distribution for the time of the fourth

transition, or the probability that s

5

= heatup (s

5

is the state between the �fth and sixth transitions).

Section 3.2 then discusses the methodology for structural decomposition in greater generality. Finally,

leveraging structure is a very powerful and important idea, but it is not always, by itself, su�cient, nor is it

the only source of power one should turn to when solving a problem. The structural decomposition of the

HSSMM is a huge win, but it is not enough by itself to make the search task feasible. Section 3.3 considers

this point, a problem which is addressed more comprehensively in Chapter 4.

3.1 Decomposing the HSSMM.

This section decomposes the task of �nding an optimal k-length segmentation, �

�

k

, given an HSSMM and

time-series data, X. Equation (2.4) identi�es the optimal k-length segmentation as

�

�

k

= argmax

�2�

P (�jX) (3.1)

47
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Figure 3.1: Dependencies between the random variables of a segmentation.

where � = ht

0

; s

0

; :::; s

k�1

; t

k

i, t

0

= 0, and from Equation (2.3),

P (�jX) = �b

s

0

k�1

Y

i=0

a

s

i

;s

i+1

�(c

s

i

)c

s

i

(t

i+1

� t

i

)

Y

v

d

s

i

(X

v

; t

i

; t

i+1

) (3.2)

where � = �(X) is a constant when X is given.

Notice that the evaluation function in (3.2) is a product of terms where each term involves only a small

number of variables. For example, the term c

s

3

(t

4

� t

3

) involves only three random variables: t

3

; s

3

; t

4

,

as does d

s

3

(X

1

; t

3

; t

4

). This is a signi�cant source of structure and is a �rst indication that there may

be structure in the problem that can be e�ciently utilized. However, it is also necessary to examine the

interdependencies between the variables.

In Figure 3.1, the random variables in this problem are shown with an edge between two variables if both

appear together in a single term of (3.2). For example, since s

1

and s

2

appear together in a

s

1

;s

2

, there is an

edge between s

1

and s

2

. Because t

1

, s

1

, and t

2

appear in c

s

1

(t

2

� t

1

), there are edges between all pairs of

t

1

, s

1

, and t

2

. Figure 3.1 represents the dependencies between the variables in a segmentation. Structure

exists because the variables are not totally interconnected.

Figure 3.1 depicts a graphical Markov �eld. Suppose the function P (�jX) is given as in (3.2), and suppose

also that somehow the time of the second transition, t

2

, and the state just prior to that transition, s

1

, are

revealed. Then learning anything additional about the time of the �rst transition, t

1

, does not provide

any additional information about s

2

, the state just following t

2

. This property is referred to as the Markov

property, and hence the term graphical Markov �eld. In general, if a set of nodes, C, blocks all paths between

node sets A andB, and the values for all variables inC are given, then further knowledge about the variables

in A can provide no further information about the variables in B. A Markov �eld makes independencies of

this form explicit in a visual, graphical form. Graphical Markov properties are studied in depth in

[

Lauritzen

et al., 1990

]

and

[

Frydenberg, 1990

]

.

It is also possible to view the dependencies of (3.2) in terms of a directed graph. Directed dependency

graphs are often intuitively appealing when the direction of arrows corresponds with some notion of causality,

whereby the parents of a node are considered to be that node's direct \causes" (

[

Pearl, 1988

]

). It is possible

to convert Equation (3.2) into a directed graph as follows:

1. Impose any total ordering on the random variables.

2. For each term in (3.2), insert a directed arc between all pairs of variables in the term, with the direction

determined by the ordering.

For any ordering, a directed acyclic graph results, but few of these would be considered \causal", since for

example, most contain arrows pointing backwards in time (e.g., an arc from t

i

to t

j

where j < i). By using,

for example, the ordering where t

i

precedes s

i

and s

i

precedes t

i+1

, and by taking X

v

as a constant (not

a random variable, therefore it does not appear in the graph), the directed dependency graph shown in
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Figure 3.2: Directed dependencies between the variables of a segmentation.
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Figure 3.3: Directed dependencies for P (�) with no time series data considered.

Figure 3.2 results. By picking other possible orderings that agree with the time order, the direction any of

the arcs between s

i

and t

i

can be reversed.

The need to include arrows between s

i

and t

i

arises from the data term in (3.2). If we consider just P (�),

the probability of a segmentation with no data given, these arrows can be omitted since c

s

i

(t

i+1

� t

i

) can be

equivalently expressed as a conditional probability distribution P (t

i+1

jt

i

; s

i

) = c

s

i

(t

i+1

� t

i

). When a term

is a conditional probability distribution, it is only necessary to include arcs from each variable on the right

hand side of the bar to the variable on the left hand side of the bar | in this case, an arc from t

i

to t

i+1

and an arc from s

i

to t

i+1

. Thus, the dependencies for P (�) alone, as given by Equation (2.2), is shown in

Figure 3.3. The graph shows that without data, t

i

and s

i

are independent given s

i�1

, while this is not the

case when time-series data is given (Figure 3.2).

We can also treat d(Xj�) as a conditional probability distribution and explicitly include a node in the

graph corresponding to the observed data (X), as shown in Figure 3.4. This makes it possible to draw

dependencies as directed without including the arrows between s

i

and t

i

. However, Figure 3.4 introduces

a number of dependencies that are not present in this problem. Because the data distribution is a product

form (2.1), the data dependencies can be broken down further. This is depicted in Figure 3.5. The notation

X

v

i

denotes the data between t

i

and t

i+1

for sensor v.

The various dependency graphs provide various alternative ways of viewing the structure of the problem.

These can provide a model designer with a visual representation that can be of great assistance in under-

standing the limitations of a model, and help in spotting alterations that can have signi�cant computational

advantages. The literature on graphical probabilistic models gives an enormous amount of attention to the

question of what independence properties are explicitly encoded by graphical dependency structures. For

the remaining purposes in this thesis, these issues are irrelevant, but it is interesting to examine exactly what

independence relationships are encoded by these various dependency graphs. All three of the dependency

graphs considered above (Figures 3.5, 3.2, and 3.1) all encode precisely the same conditional independence
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Figure 3.4: Directed dependencies including an observed data node, X.
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Figure 3.6: The junction tree for the segmentation problem.

relationships (assuming that time-series data is always given). Even when time-series data is not given,

as in Figure 3.3, the computational situation is the same since all existing algorithms for solving directed

probabilistic networks would add a dependency between t

i

and s

i

anyway (a result of t

i

and s

i

being in

each other's Markov blanket

[

Pearl, 1988, pg. 97

]

). It is the author's opinion that for this problem, the

undirected dependency graph is the most natural expression of (in)dependencies, the easiest to interpret,

and the easiest to deal with.

While dependency graphs illustrate the structure of a problem, for the purposes of computation, the

graphical representation shown in Figure 3.6 is more useful. This representation is called a junction tree

(

[

Jensen et al., 1990b

]

,

[

Jensen and Jensen, 1994

]

, others), cluster tree (

[

Shachter et al., 1994

]

,

[

Draper,

1995

]

), or Markov tree (

[

Shenoy and Shafer, 1986

]

). Nodes in Figure 3.6 represent subsets of variables, such

that the graph has the following properties:

1. It is an undirected tree (no loops).

2. Any subset of variables appearing together in a single term of (3.2) also appear together in some node

of the junction tree.

3. For any two nodes with vertex subsets A and B, all nodes on the path between the two nodes contains

all the variables in A \B.

The third property is called the junction-tree property.

It is usually more direct to write the dependencies in a problem �rst in the form of Figure 3.1. Transform-

ing Figure 3.1 to Figure 3.6 can then be done mechanically, as discussed below. Because the motivations here

are purely computational, Figure 3.6 is the graph of interest (for exact methods). The use of the junction

tree was pioneered by

[

Lauritzen and Spiegelhalter, 1988

]

and

[

Jensen et al., 1990a

]

.

The signi�cance of Figure 3.6 is that it decomposes the huge 2k-dimensional search problem into 2k related

3-dimensional search problems. It is far more tractable to solve 200 3-dimensional optimizations than it is

to solve one 200-dimensional optimization task. The reduction is possible because of the structure identi�ed

in Figure 3.1. To perform the optimization, each node of Figure 3.6 communicates local information about

its optima with its neighbors and incorporates local information from its neighbors into its own optimization

task. The e�ect is the propagation of information down the tree and back.

Triangulating Dependency Graphs

The problem of going from a dependency graph to a junction tree is a well understood problem

[

Lauritzen

and Spiegelhalter, 1988

]

. Three steps are involved (each explained subsequently):

1. If there are directed dependencies, construct the moral graph.

The moral graph is undirected.

2. Triangulate the (undirected) graph.
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Figure 3.7: (a) A nontriangulated graph (without dashed edges) and a possible triangulation (with dashed

edges). (b) A recursive decomposition.

3. Extract the junction tree from the triangulated graph.

The purpose of Step 1 is to �nd an undirected graph encoding all the dependencies in the original graph

(

[

Kelly, 1988

]

). In general, it will encode additional dependencies as well (i.e., it will not encode certain

independencies). The moral graph provides an easy way of �nding such a graph. If the dependency graph

is already undirected, this step is skipped.

The moral graph is obtained from the original directed acyclic dependency graph by inserting edges

between all nodes sharing a common child, then replacing all directed edges by undirected ones. If the

dependency graph contains directed and undirected edges, but has no cycles containing one or more directed

edges, then it is called a chain graph

[

Frydenberg, 1990

]

, and any nodes are married that have children

belonging to the same connected component (i.e., when there is an undirected path between the children).

See

[

Frydenberg, 1990

]

for more on chain graphs. A moral graph is undirected. Note that the moralization

step is quite trivial.

Figure 3.1 shows the moral graph for both the dependency graphs in Figures 3.2 and 3.3. In Figure 3.2,

the parents of each node in the graph are already connected, so moralization is accomplished simply by

dropping the direction of edges. In Figure 3.3, the parents of t

i

must be \married" by adding an edge

between t

i�1

and s

i�1

, after which, the direction of arrows are dropped.

An undirected graph is triangulated whenever every cycle of length four contains a chord, i.e., an edge

between two nonadjacent vertices in the cycle (

[

Golumbic, 1980

]

). The short circuit is sometimes called a

chord and the term chordal is synonymous for triangulated. The graph in Figure 3.1 is triangulated.

If a graph is not triangulated (an adjective), it can always be triangulated (a verb) by adding the

appropriate (undirected) edges. Even though this is not necessary in Figure 3.1, it is necessary to complete

a triangulation step in general, and so I discuss the process in detail here. Each time an edge is added, a

new dependency is introduced (equivalently, an independency is removed). Since structure is a source of

computational power, it is desirable to minimize the number of edges added and to carefully select which

edges are added. For example, without the dashed edges, the graph in Figure 3.7(a) is not triangulated, but

the graph containing the dashed edges is triangulated. If edges from x

2

|x

5

or x

3

|x

5

are added, the graph

is still triangulated, but these are unnecessary and reduce computational e�ciency.

One way of �nding a good triangulation is to recursively decompose the dependency graph (

[

Golumbic,

1980, Cooper, 1990a

]

). Finding a triangulation is then equivalent to �nding a decomposition (Figure 3.7(b)).

An undirected graph is decomposable when it is complete, or when there exists two sets of vertices, A

and B, such that V = A [ B, A \ B is complete

1

, and A \ B separates A from B (

[

Golumbic, 1980,

1

A\B is complete when the nodes in A \B are totally connected.
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Lauritzen et al., 1984, Dawid and Lauritzen, 1993

]

). A decomposition is proper if A;B 6= V. A classical

result (

[

Golumbic, 1980

]

) is that an undirected graph is decomposable if and only if it is triangulated. Thus,

triangulation is equivalent to choosing a recursive decomposition. A recursive decomposition of G is a binary

tree, with each branch being a recursive decomposition subgraphs G

A

and G

B

respectively. The leaves of a

recursive decomposition are the cliques of the triangulated graph. The triangulation is obtained by simply

connecting any two nodes belonging to a common leaf of the recursive decomposition.

A second way to �nd a triangulation is by way of a node peeling order. A perfect numbering is a

numbering of the nodes of an undirected graph, fx

1

;x

2

; :::;x

n

g, such that neighbors(x

i

) \ fx

i+1

; :::;x

n

g is

complete. A graph admits a perfect numbering if there exists a perfect numbering of its vertices. In such a

graph, one node at a time can be peeled o� the graph with the property that when a node is removed, all

its remaining neighbors are totally connected. Another classical result is that a graph is triangulated if and

only if it admits a perfect numbering. This also highlights the importance of a triangulation | because a

peeled node's neighbors are totally connected, they can absorb the information from the node (marginalized

to the remaining subgraph). To triangulate an untriangulated graph, one can simply specify an ordering for

the nodes | this ordering will be the perfect numbering. Then, simply remove the �rst node and add in

any edges required to connect the node's neighbors in the remaining graph. Then remove the second node,

connect its neighbors, etc. The edges added during this process are the triangulation edges (the dashed

edges in Figure 3.7, and they can then be added to the original graph. For the graph in Figure 3.7, a node

ordering that results in the given triangulation is x

5

; x

1

; x

4

; x

3

; x

2

.

An optimal triangulation is one that minimizes the computational complexity of propagation (discussed

next in Section 3.1.1). Roughly, this amounts to �nding a triangulation that results in the minimal-sized

cliques. When variables are discrete and �nite-valued, the optimal triangulation must also consider the

number of assignments that each clique can take on, so that instead of simply minimizing the number of

variables in the largest clique, the optimal triangulation should minimize the total number of assignments

that any clique can take on. However, �nding an optimal triangulation is NP-hard

[

Arnborg et al., 1987

]

,

so one must turn to heuristic techniques for locating a triangulation. Some heuristics have been compared

in

[

Kjaerul�, 1990

]

.

In some cases, a person may be designing a formalism for a particular application, in which case it can be

helpful to consider how dependencies will be triangulated. Removal of certain problematic dependencies may

dramatically reduce the complexity of a resulting triangulation. For example, if any one of the (undashed)

dependencies in Figure 3.7(a) could be eliminated, the graph would be triangulated with no clique having

more than two variables. Conversely, there may be certain candidate dependencies in the formalism that

the engineer might be worried about adding, since additional dependencies may increase computational

complexity. However, if these dependencies must be added anyway in order to triangulate the graph, then

these dependencies will not create an additional computational cost. In this way, an engineer has guidance

as to which features of a formalism come with a high computational price, and which can be added without

a computational penalty. Consider, for example, the option of using holding-time distributions (Page 31)

instead of waiting-time distributions in the HSSMM formalism. Would this generalization increase the

computational complexity of �nding a solution? The question can be answered by considering the impact

on the triangulated graph. A holding-time distribution renders t

i

dependent on t

i�1

, s

i�1

, and s

i

. This

amounts to the graph in Figure 3.2 but with the arrows from t

i

! s

i

reversed (i.e., from s

i

! t

i

), which in

turn yields the triangulated moral graph in Figure 3.8. As compared with Figure 3.1, this graph contains

larger cliques (of size 4), and thus results in an increase in required computation.

After an undirected triangulated dependency graph is obtained, a junction tree for the graph can be

quickly constructed

[

Jensen and Jensen, 1994

]

. The cliques of the graph become the nodes of the junction

tree. The edges connecting cliques of the junction tree must be speci�ed in a way that ensures the junction-

tree property | i.e., that the path between any two nodes in the junction tree contains the intersection

of the two nodes at every step (Page 51). This can be ensured by adding the largest separators �rst in a

greedy fashion (see

[

Jensen and Jensen, 1994

]

). Unlike the task of �nding a triangulation, the extraction

of a junction tree from an already triangulated graph can always be done e�ciently (i.e., in polynomial

time). For Figure 3.1, the linear structure of the graph yields only one possible junction tree, so this step is

especially trivial.
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Figure 3.8: Moralization of dependencies introduced by including waiting-time distributions in the HSSMM.

3.1.1 Propagation

Figure 3.6 decomposes the huge 2k-dimensional optimization task into 2k related 3-dimensional search

problems. The single global evaluation function of (3.2) is decomposed into several local evaluation functions

called potentials | one for each node and one for each edge in Figure 3.6. Each node passes information

about its potential function to its neighbors, and whenever a node receives a message from a neighbor, it

modi�es its potential function accordingly. This process of message passing is called propagation. After

propagation converges, each individual node in Figure 3.6 can be optimized locally such that when put

together, the global maximum is obtained.

Denote the potentials of each node of Figure 3.6 as  

t

i

;s

i

;t

i+1

and  

s

i

;t

i+1

;s

i+1

. For each edge, de�ne

potentials #

s

i

;t

i+1

and #

t

i

;s

i

. For example,  

t

1

;s

1

;t

2

(t

1

; s

1

; t

2

) is a function mapping the times of the �rst

and second transitions and the state between those times to a real number. It is notationally convenient to

write  (t

1

; s

1

; t

2

), omitting the subscripts since the arguments make it clear which function is being referred

to. At each step during the propagation, each node in Figure 3.6 has exactly one potential function ( )

associated with it. Similarly, each edge has also exactly one potential (#). Initially set

 (t

i

; s

i

; t

i+1

) = �(c

s

i

)c

s

i

(t

i+1

� t

i

)

Y

v

d

s

i

(X

v

; t

i

; t

i+1

)

 (s

i

; t

i

; s

i+1

) = a

s

i

;s

i+1

i > 0

 (s

0

; t

0

; s

1

) = b

s

0

a

s

0

;s

1

#(�) = 1 (3.3)

Note that with this initialization,

P (�jX) /

Q

 

Q

#

(3.4)

where

Q

 =  (t

0

; s

0

; t

1

)

Q

k�1

i=1

 (s

i�1

; t

i

; s

i

) (t

i

; s

i

; t

i+1

),

Q

# = #(s

i

; t

i+1

)#(t

i

; s

i

), and

0

0

is taken to be 0.

To begin the propagation, the node containing ft

0

; s

0

; t

1

g propagates information to its neighboring node,

fs

0

; t

1

; s

1

g, as follows:

#

0

(s

0

; t

1

) =

1

�

max

t

0

 (t

0

; s

0

; t

1

)

 

0

(s

0

; t

1

; s

1

) =

 (s

0

; t

1

; s

1

)#

0

(s

0

; t

1

)

#(s

0

; t

1

)

with

0

0

= 0. These new potentials, #

0

(s

0

; t

1

) and  

0

(t

0

; s

0

; t

1

), replace the corresponding previous potentials.

The constant � used in the propagation step is arbitrary and can be any positive value. The reason for



3.1. DECOMPOSING THE HSSMM. 55

introducing it is to prevent numerical under
ow problems in an actual implementation. It is useful to use

� =

X

s

0

;t

1

#

0

(s

0

; t

1

)

This keeps the magnitudes of the values of a potential function within a reasonable range so that the numbers

do not under
ow by enforcing that  

0

is always normalized. The � factor was introduced by

[

Jensen, 1994

]

.

The same trick, termed scaling, was introduced into the related Baum alpha-beta procedure by

[

Levinson et

al., 1983

]

(see also

[

Rabiner, 1989

]

and Devijver's algorithm

[

Devijver, 1985

]

), and is also the distinguishing

component of Derin's algorithm

[

Askar and Derin, 1981

]

.

The propagation from any other node to a neighboring node occurs in exactly the same manner as

the above. Once the potentials are initialized, the propagation process simply starts from the leftmost

node in Figure 3.6 and each successive node propagates to the neighbor on its right. When the rightmost

neighbor is reached, the process reverses: The rightmost node propagates to its left neighbor, it propagates

to its left, and so on, until the leftmost node is reached. After this completes, the resulting potential

functions are guaranteed to converge such that any additional propagations at that point would not alter

the potentials (

[

Dawid, 1992

]

). The full propagation algorithm is written out in Figure 3.9. When the

propagation completes, we have

 (t

i

; s

i

; t

i+1

) / max

�

fP (�jX) : �[t

i

; s

i

; t

i+1

] = ht

i

; s

i

; t

i+1

ig

 (s

i

; t

i+1

; s

i+1

) / max

�

fP (�jX) : �[s

i

; t

i+1

; s

i+1

] = hs

i

; t

i+1

; s

i+1

ig (3.5)

3.1.2 Local Optimization

Once the propagation completes, each potential is truly local | that is, a global optimization can be obtained

by optimizing each individual node in Figure 3.6 individually since each maximum in (3.5) corresponds to

the global optimum. If there is only one optimal segmentation (in other words, there are not two or more

segmentations that are tied), then each local frame will have a unique optimum. We can �nd the values t

0

,

s

0

, and t

1

for the optimum segmentation by locating the optimum value in  

t

0

;s

0

;t

1

. The remaining variables

can be determined by optimizing the other local frames. If there is more than one optimum segmentation,

then the multiple maxima at the various frames must be matched in the obvious fashion to obtain a valid

global optimum. For example, after �nding a maximum for t

0

; s

0

, and t

1

, the potential  

s

0

;t

1

;s

1

is optimized

subject to the given values for s

0

and t

1

, and so on. The result is an HSSMM-speci�c variation of the Viterbi

algorithm (

[

Forney, 1973

]

).

3.1.3 Computing Marginal Distributions

When P (�jX) in Equation (3.2) is interpreted as a probability distribution, it is often useful to compute

marginal posterior distributions for individual variables of the segmentation. For example,

P (t

1

jX) =

Z

�

t

1

P (�jX)d� where �

t

1

= f� : �[t

1

] = t

1

g

is the posterior distribution over the possible times for the �rst transition,

P (s

0

jX) =

Z

�

s

0

P (�jX)d� where �

s

0

= f� : �[s

0

] = s

0

g

is the probability distribution over the possible starting states, etc. Such estimations are often used in EM-

statistical learning algorithms (

[

Dempster et al., 1977, Rabiner, 1989

]

) and are also utilized in Chapter 4 for

discretizing continuous variables.

The same methodology that was used to decompose the optimization problem can also be applied to

decompose the computation of marginal distributions. The potentials for each node and edge in Figure 3.6
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// Rightward propagation:

For i = 1 to k � 1 f
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// Leftward propagation:

For i = k � 1 downto 1 f
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Figure 3.9: Propagation of potentials for optimization.
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// Rightward propagation:

For i = 1 to k � 1 f
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// Leftward propagation:

For i = k � 1 downto 1 f
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Figure 3.10: Propagation for the computation of marginal posterior distributions.

are initialized as speci�ed in (3.3), and the potentials are propagated as before except that edge potentials

are updated using summation rather than maximization, e.g.:

#
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(s

i

; t

i+1

) =
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X
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i

 (t

i

; s

i
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)

The full propagation is written out in Figure 3.10. It is easy to verify that each propagation step preserves

the invariant of (3.4), i.e.,

P (�jX) /

Q

 

Q

#

so that the relative evaluation of any two segmentations is never altered by a propagation step. Even the

constant of proportionality is preserved by each propagation step.

Because the invariant is preserved, immediately following the CollectEvidence (i.e., the rightward prop-

agation) step, the potential  (t

k�1

; s

k�1

; t

k

) di�ers from P (t

k�1

; s

k�1

; t

k

) only by the constant factor �.



3.2. GENERAL METHODOLOGY 58

Thus, this is a convenient time to evaluate the normalization constant:
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Indeed, this is the same � that appears in Equation (3.2). Having computed �, the potential  (t
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With this substitution (and dropping the prime), the new invariant

P (�jX) =

Q

 

Q

#

is established and preserved by the DistributeEvidence (i.e., leftward propagation) step. The clique-marginal

propagation algorithm with a normalization step inserted between the CollectEvidence and DistributeEvi-

dence steps is known as Jensen's algorithm or the Hugin algorithm (

[

Jensen et al., 1990a

]

,

[

Jensen et al.,

1990b

]

). The algorithm without the normalization step is best credited to

[

Lauritzen and Spiegelhalter,

1988

]

.

After the propagation has completed, each local potential is the marginal over these variables, e.g.,
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The marginal posterior distribution for an individual variable is obtained by selecting any node potential

containing that variable and summing or integrating out the remaining variables, for example,
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)dt
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In other words, after propagation, the marginal distributions are obtainable from a localized integration.

Note that since P (t

i

jX) is a probability density function, the constant of proportionality is simply the value

that yields

R

P (t

i

jX)dt

i

= 1.

3.1.4 Potential Representation

This section has demonstrated how the HSSMM-based segmentation problem can be decomposed into smaller

local subframes which can then be optimized individually. There is one critical aspect of the propagation

process that has not yet been addressed: how  and # are to be represented. The above exposition refers to

these in the abstract, and provided that they can be represented (exactly), both before and after propagation

updates, the above description continues to hold. However, since these potential functions have an in�nite

domain, their representation is problematic. This is considered in Section 3.3 and Chapter 4.

Although the algorithm to segment time-series data might be of interest to some readers, the more

important thing one should come away with from this exposition is a familiaritywith the general methodology

that was used to obtain the decomposition and the associated propagation algorithm. Therefore, the next

section examines the general methodology.

3.2 General Methodology

Suppose someone has a time-series segmentation problem that is almost (but not quite) perfect for the

HSSMM approach, but some assumption in the HSSMM formalism must be altered. For example, perhaps

the assignment of sensor shapes to states should be nondeterministic, the use of waiting-time distributions

needs to be replaced by holding time distributions, there is a desire to weaken the semi-Markov property of

the transition model (see Section 7.2.1 of Chapter 7), or the evaluation criteria is to be changed. An algorithm
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to segment a time series using an HSSMM does not reveal how such alterations are to be handled. However,

an understanding of the general methodology of structural decomposition does provide such guidance.

The general methodology of structural decomposition is very powerful and applicable far beyond time-

series segmentation. It is also quite simple and quite clean. For this reason, it is more important to obtain a

familiarity with the methodology from this exposition than it is to add a time-series segmentation algorithm

to one's collection of algorithms. This section describes the decomposition process in general terms.

One should consider decomposing a large inference problem into smaller subproblems whenever the

knowledge involved appears to contain signi�cant structure, particularly if the structure arises from any sort

of irrelevance or conditional independence (not necessarily probabilistic independence) between pieces of

knowledge. Without a well-organized methodology, discovering just how to e�ectively utilize this structure

is no easy task. The general methodology discussed here can provide signi�cant guidance to a wide class of

inference problems.

The most valuable bene�t from this methodology may actually be something that has not, to my knowl-

edge, been discussed and certainly has not been emphasized in related published literature: The methodology

can be of tremendous assistance in designing a problem formulation. Real applications do not come with

�xed and prede�ned formulations, and it is the task of formulating a computationally tractable representa-

tion of an application problem that is often the most di�cult and most critical step in its solution. Because

of the graphical nature involved in the expression and manipulation of dependencies, graphical Markov �eld

theory helps one di�erentiate between problematic versus easy to handle dependencies, helps one isolate

pieces requiring simpli�cation, and suggests possible assumptions that would yield high e�ciency returns

[

Smyth et al., 1996

]

. While most of the mathematics underlying this theory is not new to this thesis

2

, the

message and style of using the theory for guiding problem formation is not similarly emphasized elsewhere.

3.2.1 Overview

To use the methodology, it is necessary to cast one's problem in the appropriate terminology. This in-

volves expressing possible situations in terms of joint assignments to variables, expressing knowledge by way

of potentials, expressing the inference problem as a marginal function, and expressing the structuring of

knowledge in terms of a combination function. These components of the methodology are introduced in

Section 3.2.2.

Given a formalization of a problem in the appropriate terms, the methodology can then be applied to

obtain an inference algorithm that utilizes structure in the problem for computational advantage. Applying

the methodology consists of the following steps:

1. Choose an appropriate set of variables to describe the possible situations (con�gurations).

2. Draw a dependency graph indicating dependencies between variables (Section 3.2.3).

3. Triangulate the graph (Section 3.2.3).

4. Extract a junction tree, which is then used as the basis for propagation (Section 3.2.4).

5. Choose a (conjugate) representation for local potentials (Section 3.2.5).

6. De�ne the initialization of local potentials.

In some applications of the methodology, it may be appropriate to automate all or some of the above

steps. For example, the knowledge underlying a Bayesian network or chain graph may be encoded in

an expert system, and thus to perform an inference the system may perform all the above steps without

human intervention. The same may hold in other cases whenever a problem formulation is cast in stone.

However, here I am advocating a slightly di�erent use for the methodology, whereby the above steps will

typically be done by hand by a human. Certain algorithms may assist the human in some of the steps, such

as triangulation or extraction of a junction tree, but once again, but the emphasis here is the usefulness

2

The speci�c axiomatization is an original contribution, although it does borrow tremendously from

[

Shenoy and Shafer,

1990

]

and

[

Dawid, 1992

]

.
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of the methodology when designing a problem formulation initially. In a great many applications of the

methodology, the need to dynamically triangulate the graph at run time, for example, is not essential, and

thus these steps can be hand designed as appropriate. This was the case for the HSSMM.

3.2.2 Expressing a Problem

In order to apply the methodology, an application, the knowledge available, and the problem to be solved

must be expressed in terms of a joint set of variables, a potential function, a marginal function, and a combi-

nation function satisfying certain properties (axioms). These are �rst introduced here in a very formal and

precise fashion, followed by a less formal discussion of how these components should in
uence one's problem

formulation. The axioms below are similar to those introduced in

[

Shenoy and Shafer, 1990

]

, although most

readers should �nd the presentation given here to be greatly simpli�ed and easier to comprehend. The two

axiomatizations are slightly di�erent.

Let V = fx

1

; :::;x

k

g be a set of variables taking on possible values from 


1

; :::;


k

. No assumptions are

made here about the �niteness or countability of 


i

. A joint assignment, x = �

i=i::k

x

i

, takes on a value

from 
 = 


1

� :::�


k

. If A � V is a subset of variables (A = fx

i

1

; :::;x

i

`

g), then x

A

denotes x

i

1

� :::�x

i

`

.

The space of all possible subsets of variables is 2

V

. If x and y are joint assignments, we say that x and y

agree on A when x

A

= y

A

.

A potential  is a function on 
. Commonly it maps from 
 to real numbers in [0; 1], but in general

it might map to complex numbers, fuzzy numbers, bounds, vectors, or, with a stretch of the imagination,

something symbolic such as sentences or concepts. The only requirement

3

on this function is on its domain,

i.e, that it be 
. A set of potential functions is denoted using 	. The space of all possible potential functions

is �.

A marginal function, m : ��2

V

�! �, takes a potential function and a subset of variables as input, and

returns a potential function with the property that the potential function is constant over all assignments

that agree on the given subset of variables. Stated precisely, this is the �rst axiom

Axiom 1 (Locality) m( ;A)(x) = m( ;A)(y) whenever x

A

= y

A

.

We also assume that the marginal function obeys the following:

Axiom 2 (Re
exivity)  = m( ;V), where V is the full set of variables.

Axiom 3 (Consonance) m(m( ;A);B) = m( ;A \B)

We say a potential function is local to A whenever  = m( ;A).

When  

A

and  

B

are two local potentials (local to A and B respectively), we say they are consistent

when m( 

A

;B) = m( 

B

;A).

A combination function accepts two arguments, both of which are sets of potential functions, and returns

a potential function. c(	

1

; 	

2

) returns the combination of the potentials in 	

1

modulated by the potentials

in 	

2

. When 	

2

= ;, we will also write simply c(	

1

). Typically, the combination function can equally well

be referred to as a (generalized) product function, whereby the potentials in 	

1

are multiplied together and

the result is divided by each of the potentials in 	

2

. In general, this may be the standard arithmetic product,

various fuzzy product functions, evidential combination formulas, etc. A combination function must obey

the following axiom whenever the potentials in 	

1

[	

2

[	

3

[	

4

are consistent:

Axiom 4 (Associativity) c(	

1

[	

2

; 	

3

[	

4

) = c(fc(	

1

; 	

3

)g [	

2

; 	

4

)

The marginal and combination functions must be interrelated according to the following axiom:

Axiom 5 (Extraction)

m(c(f 

1

;  

2

g; fm( 

1

;B)g);B) =  

2

whenever  

2

= m( 

2

;B).

3

Although a conjugacy requirement is introduced on local potentials in Section 3.2.5.
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These axioms imply the following convenient consequence.

Proposition 1 (Cancellation) c(	

1

[	

2

; 	

2

[	

3

) = c(	

1

; 	

3

)

Potentials, marginal and combination functions, and the above axioms provide a framework for stating

and thinking about inference problems. First, the methodology requires one to view inference problems and

knowledge bases in terms of a collection of variables. Typically, a complete situation is described fully by an

assignment of a value to all variables. An inference problem consists of deducing information about some

subset of those variables when only partial information about the complete situation is known. Typically, the

variable-based representation is just one of several possible alternatives (for example,

[

Shafer et al., 1987

]

use

a partition-based representation), the choice between them being often arbitrary. A need for quanti�cation

can complicate the variable-based representation and require additional machinery, not considered here (see

[

Breese, 1992

]

,

[

Poole, 1993a

]

,

[

Haddawy, 1994

]

). For the HSSMM, the variables are those that de�ne a

segmentation.

Local Potentials

As stated above, a potential  is local to a subset of variables A whenever  = m( ;A). It is more e�cient

to represent a local potential than it is to represent a global potential, especially when A contains a small

number of variables, since it can be stored in terms of a function depending only upon the supporting

variables, A.

Although it is not explicit in the axioms or in the theorems that follow, a potential may (optionally)

remember its supporting variables. One way to view this is that A, the set of supporting variables, is simply

one of the parameters that de�nes  . For example,  may be stored (parametrized) internally as h�;Ai,

where � : 


A

�! Range( ), and A is a subset of variables. The potential's value is then  (x) = �(x

A

).

Below we will write loc( ) for the supporting variables when a local potential representation is used, i.e.,

loc( ) = A when  := h�;Ai.

One very important thing to note is that the marginal and combination functions may explicitly access

the identity of the supporting variables. This is necessary, for example, to de�ne marginal probability in the

standard fashion.

By leaving this aspect of the representation explicit in the axioms, the notation is greatly simpli�ed and

the axioms are even slightly more general then they would otherwise be since the theorems that follow do

not require this particular choice of local representation.

Interpretation of Components

A potential is essentially a representation of knowledge | both background knowledge and knowledge

about the particulars of a problem instance combined. Again, the view of knowledge as a mapping from

variable assignments to a value is not as much a limitation as it is simply a way of viewing knowledge.

The general framework does not stipulate the type of value that a potential maps to | it may be truth

values, probabilities, fuzzy measures, or even nonnumbers. Thus, this view of knowledge is quite 
exible.

For the HSSMM, we use as a potential the evaluation function of (3.2), which as discussed earlier, may be

interpreted as a probability density.

The marginal function serves a number of purposes. Most importantly, it usually extracts the \answer"

to an inference problem from a joint potential. The joint potential represents all global knowledge available,

the marginal function extracts out the information about some local item of interest (i.e., knowledge about

a subset of variables taken locally). The framework requires this local knowledge to also be expressed in the

form of a potential function, but being local it is more readily interpreted. For the HSSMM, two marginal

functions were introduced:

m( ;A)(x) = max

y:y

A

=x

A

 (y)

used to �nd the optimal con�guration, and

m( ;A)(x) =

Z

y = x

A

y 2 loc( )

 (y)dy (3.8)
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loc(m( ;A)) = loc( ) \A

used to �nd local marginals in Section 3.1.3. The integration in (3.8) becomes a summation when 
 is

countable. The function loc is the local potential function discussed above. The required properties of the

marginalization function, Axioms 1{3, are quite straightforward.

Finally, the methodology utilizes a combination function. The global knowledge in  is formed as a

combination of various local (consistent) facts, and it is the combination function that determines how these

local pieces of information join together to form the global knowledge entailed by  . It is also by way of

the combination function that structure gets introduced. If  were to be simply speci�ed as an amorphous

function (a black box), mapping variable assignments to potential values, there would be no opportunity to

leverage structure that might be inherent in the problem. By combining pieces of knowledge together using

the combination function, there is an opportunity for structure to exist within the knowledge.

In the axiomatization developed here, the combination function c(	

1

; 	

2

) takes two sets of potentials.

Those in 	

1

are combined, while those in 	

2

denote knowledge that is to be factored out of the combination

(see Proposition 1). The second argument gives the framework some additional 
exibility, and allows us to

match the well-known propagation algorithm developed by

[

Lauritzen and Spiegelhalter, 1988

]

and

[

Jensen

and Jensen, 1994

]

exactly. A similar axiomatization introduced by

[

Shenoy and Shafer, 1990

]

does not include

a second argument to the combination function and results in a slightly di�erent propagation algorithm. For

example, the algorithm of

[

Jensen and Jensen, 1994

]

is not a special case of

[

Shenoy and Shafer, 1990

]

, but

is a special case of the axiomatization discussed here. Axiom 4 expresses a natural requirement: that the

combination of knowledge does not depend on the order in which is combined.

The combination function and marginal function cannot be chosen in a totally disconnected fashion.

Axiom 5 expresses succinctly the relationship that must exist between these two functions. It states that

on any \universe" B (terminology of

[

Jensen and Andersen, 1990

]

and

[

Jensen et al., 1990b

]

) on which  

2

is

local, combining  

1

with  

2

and then factoring out the local e�ect of  

1

in B yields the same local potential

 

2

on B. It is rather surprising that such a simple relationship between the marginal and combination

functions is all that is necessary for the methodology to be applicable.

3.2.3 Graphical Markov Representation

Let G = (V; E) be an undirected graph with vertices V and edges E � ff�; �g : �; � 2 V; � 6= �g. The

vertices of our graphs correspond to the random variables V above, hence the dual use of V. A path of

length L from �

0

to �

L

is a sequence of at least two vertices, �

0

; �

1

; :::; �

L

, such that f�

i

; �

i+1

g 2 E . A

cycle is a path with �

0

= �

L

. A subset of vertices, S, is said to separate A from B when all paths from

any node of A to any node of B contain a node in S. If A is a subset of vertices, the graph G

A

induced

by A is the subgraph G

A

= (A; E

A

) where E

A

is the set of edges in E with both endpoints in A (i.e.,

E

A

= ff�; �g : �; � 2 Ag\ E). A subset of vertices, A, is called complete when all pairs of vertices in A are

connected. If A complete and is not a subset of a larger complete set of vertices, then A is called a clique.

The set of all cliques in G is denoted by C.

A pair of vertex subsets, (A;B), decomposes G when V = A[B, A \B is complete, and A \B separates

A from B. The decomposition is called proper if A;B 6= V. A graph G is decomposable when it is complete,

or if there exists a proper decomposition (A;B) into decomposable subgraphs G

A

and G

B

. A well known

graph theoretic result (e.g.,

[

Golumbic, 1980

]

) is that a graph is decomposable if and only if it is triangulated

(also called chordal), that is, if all cycles of length L � 4 contain a short-circuiting edge (a chord) between

two nonconsecutive vertices in the cycle. Any graph can be converted to a triangulated graph by adding

edges, but �nding the optimal triangulation is in most cases NP -hard (

[

Arnborg et al., 1987

]

).

De�nition 1 A potential  is called Markov with respect to an undirected graph G whenever G is complete,

or when for any decomposition (A;B)

 = c(fm( ;A);m( ;B)g; fm( ;A \B)g)

Theorem 1 Suppose for each clique C 2 C of a decomposable graph G, a potential  

C

that is local to C is

given, and that these potentials are pairwise consistent. Then there is a unique Markov potential,  , having

these marginals (i.e., such that m( ;C) =  

C

).
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This theorem generalizes Theorem 2.6, Theorem 3.9, and Theorem 4.6 of

[

Dawid and Lauritzen, 1993

]

.

3.2.4 Propagation

A junction tree J = (C; E), corresponding to a graph G, also sometimes called a Markov tree (

[

Shenoy and

Shafer, 1990

]

,

[

Shafer et al., 1987

]

) a cluster tree (

[

Shachter et al., 1994

]

,

[

Draper, 1995

]

), or a join tree

(

[

Maier, 1983

]

), is an undirected tree where:

1. Each node corresponds to a subset of vertices of G.

2. The vertices of any clique in G appear together in at least one node of J .

3. Every node on a path in the tree contains a superset of the intersection of the path's endpoints.

The last property is termed the junction tree property.

A junction tree can always be e�ciently constructed from a decomposable graph (

[

Jensen and Jensen,

1994

]

). A nondecomposable graph must �rst be triangulated before a minimally-sized junction tree can be

e�ciently extracted.

The results in this section assume that the junction tree has a �nite number of nodes.

A junction tree is useful for e�ciently computing marginals by locally propagating information between

the nodes of the junction tree. Each node of the junction tree, C, maintains a potential  

C

that is local

to C. Denote the set of these by 	

C

(i.e., 	

C

has one member per node in the junction tree). In addition,

each edge in the junction tree maintains a potential  

A\B

that is local to both its endpoints (a separator

potential). We say that a subset of variables is a separator when it is the intersection of two adjacent nodes

in a junction tree, and denote by S the set of all separators in the junction tree. Note that there is one

separator per edge. Denote the set of all separator potentials by 	

S

.

The local potentials in 	

C

[	

S

are initialized so that

 = c(	

C

; 	

S

) (3.9)

where  is the potential of interest.

Suppose A and B are neighbors in the junction tree. Then a propagation from A to B occurs as follows:

 

0

A\B

= m( 

A

;A\B) (3.10a)

 

0

B

= c(f 

B

;  

0

A\B

g; f 

A\B

g) (3.10b)

after the propagation, the local potentials  

B

and  

A\B

are replaced by  

0

B

and  

0

A\B

.

Theorem 2 A propagation step does not change  , i.e., c(	

C

; 	

S

) = c(	

0

C

; 	

0

S

).

A full propagation is accomplished as follows. First, pick any node of the junction tree as the root. Let

d be the maximum distance between the root and any other node. Second, perform a collect evidence step:

for each node at distance d from the root, propagate from it to its neighbor at distance d � 1. Then for

each node at distance d� 1, propagate from it to its neighbor at distance d� 2, and so on, until the root's

neighbors have propagated to the root. Third, perform a distribute evidence step: From the root, propagate

potentials outward to the leaves, �rst from the root to its neighbors, then from each node at depth 1 to each

of its neighbors at depth 2, and so on down to depth d.

Theorem 3 After a full propagation,  

C

= m( ;C) for all local potentials  

C

in the junction tree.
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3.2.5 Representation

Axioms 1{5 ensure that the computation of marginals is well-de�ned (Theorem 1) and can be carried out by

propagation (Theorem 3). In essence, these axioms characterize the general properties su�cient to utilize

these Markov �eld techniques to decompose and solve a problem. There is, however, an additional concern

that has not yet been addressed: on a computer, local potential functions must be represented. Until the

required properties of the representation are considered, the axiomatization is really not complete.

It is useful to think of each local potential function as being speci�ed by a set of parameters. For example,

A might be a set of n real-valued variables, and the local potential on this subset of variables,  

A

, may

be represented as a n-dimensional Gaussian distribution (as in

[

Lauritzen, 1992

]

,

[

Shachter and Kenley,

1989

]

,

[

Andersen et al., 1993

]

, and

[

Chang and Fung, 1991

]

). In this case,  

A

is parameterized by an n-

dimensional mean vector and an n�n covariance matrix. Denote by �

A

the family of all potentials that can

be represented at A | i.e., the space of all n-dimensional Gaussian distributions. With this representation,

the propagation step outlined in the previous section can only succeed if at every step of the propagation

process,  

A

is in �

A

.

The potential representation is characterized by a family of potentials for each node, f�

C

: C 2 Cg, and

for each separator, f�

S

: S 2 Sg, in a junction tree. We therefore have the following requirement on the

representation of potentials.

Axiom 6 (Conjugacy) Suppose A;B 2 C are the variable subsets for two adjacent nodes in a junction

tree. Let �

A

be the family of representable potentials at A, and let �

A\B

be the family of representable

separator potentials at A \B. Then for any  

A

2 �

A

,  

A\B

2 �

A\B

, and  

0

A\B

2 �

A\B

,

m( 

A

;A \B) 2 �

A\B

c(f 

A

;  

0

A\B

g; f 

A\B

g) 2 �

A

It is clear from a direct comparison with (3.10) that Axiom 6 ensures that all potentials during the

computation can be represented.

When the domain of x

A

is discrete and �nite, then a nonparametric representation is an option where

each potential is stored as an array with one element for each possible value of x

A

. Axiom 6 is trivially

satis�ed for a nonparametric representation. However, in general, it is much more di�cult to characterize

when this property is satis�ed in any truly general form.

3.2.6 The Shenoy-Shafer Axioms

An axiomatization similar to the one I have given here appears in

[

Shenoy and Shafer, 1990

]

. Their axiom-

atization is equally useful for demonstrating the generality of propagation techniques. It also in
uenced the

axiomatization presented above signi�cantly.

The axiomatization given above di�ers from the Shenoy-Shafer axioms for a couple reasons. First, their

axioms, as presented in

[

Shenoy and Shafer, 1990

]

, are very di�cult to understand. The description that I

have given simpli�es the exposition tremendously, and as such make the axioms much more usable for most

readers. Second, if you apply the Shenoy-Shafer axioms to a standard probabilistic network, the algorithm

that results is not the popular Jensen's (a.k.a., Hugin) algorithm. Since I utilized the Hugin algorithm in

Section 3.2.4, it was easier to describe the general methodology in terms of an axiomatization that produces

the same algorithm. Finally, neither set of axioms is fully subsumed by the other set, so it is plausible that

there are systems that decompose using my axioms but do not decompose using the Shenoy-Shafer axioms.

However, in most cases with mild additional assumptions, the Shafer-Shenoy style axiomatization is more

general.

To enable a comparison between the two axiomatizations, I will restate the Shenoy-Shafer axioms in a

form comparable to the axioms stated in the previous section. This di�ers considerably from the presentation

in

[

Shenoy and Shafer, 1990

]

, and it may take a reader a while to see that the presentation here is essentially

the same. Again, I believe the way in which I have presented them here is far easier to understand. In fact,

the axioms as presented here actually generalize those in

[

Shenoy and Shafer, 1990

]

, but the fundamental

ideas behind them are the same.
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The Shafer-Shenoy axioms also make use of a marginal function, m, satisfying Axioms 1, 2, and 3, and a

combination function, denoted here as 
 and taking only one argument and returning a potential function,

satisfying the following axioms:

Axiom 7 (Associativity) 
(	

1

[	

2

) = 
(f
(	

1

)g [	

2

)

Axiom 8 (Distributivity)

m(
(f 

1

;  

2

g);B) = 
(fm( 

1

;B);  

2

g)

whenever  

2

= m( 

2

;B).

Axiom 9 (Identity)  = 
(f ;  g)

In other words, Axioms 7 and 8 replace Axioms 4 and 5. Axiom 9 is a minor additional assumption used

to prove Theorem 5 and assumed by

[

Shenoy and Shafer, 1990

]

.

In terms of the axioms, the most notable di�erence is that the Shenoy-Shafer combination function does

not require a second argument. Essentially this means that a division-like operation does not need to be

supported (c.f., Proposition 1).

[

Shenoy and Shafer, 1990

]

did not consider the issue of conjugacy (Axiom 6).

The more distinct di�erence between the axiomatizations appears in the propagation algorithmassociated

with the axioms. Since the Shenoy-Shafer axioms have no requirement that a division operation is supported,

and since division is a basic operation used during the Jensen/Hugin propagation algorithm, it is clear that

the speci�cs of the propagation algorithm enabled by the Shenoy-Shafer axioms must be di�erent.

The basic control structure for Shafer-Shenoy propagation is the same as with clique tree propagation, and

like clique-tree propagation, Shenoy-Shafer propagation also occurs over a junction-tree graph. However,

the important local information in Shafer-Shenoy propagation exists on edge potentials rather than on

clique potentials. In addition, two potentials are maintained on each edge, one in each direction (it is not

necessary to keep clique potentials during propagation, although it can be done for improved e�ciency).

After propagation completes, the potentials in each direction are not equal | instead, each summarizes the

information originating from each side of the edge, so together they have all the information relevant to that

edge.

Suppose A is an edge (i.e., A = C

1

\C

2

for two adjacent clique nodes C

1

,C

2

2 C in the junction tree).

Because the junction tree is a tree, the edge naturally separates the graph into two components (i.e., if the

edge were removed, the junction tree become two disconnected components). Let B

1

and B

2

denote these

components. Let the notation  

B

1

!A

denotes a local potential on the edge A corresponding to side B

1

.

Edge A has two local potentials,  

B

1

!A

and  

B

2

!A

, one in each direction.

Initialization

The initial potential, in the form of  = 
(f 

C

: C 2 Cg), is assigned to the local edge potentials by setting

 

B!A

= m( 

C

;A)

where C is the clique in B attached to the edge A in the junction tree.

Propagation

Figure 3.11 shows an edge A with B denoting the portion of the junction tree to one side, and C denoting

the clique node adjacent to A. Clique node C has edges A;A

1

; ::;A

K

, and each edge A

i

is associated with

a portion of the junction tree B

i

. The basic operation for updating  

B!A

is:

 

0

B!A

= m(
(f 

B

i

!A

i

: i = 1; ::;Kg[ f 

B!A

g);A) (3.12)

And the important property of an individual propagation step is the following.
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A
A1

A

A

A4

2

3

B

C

B
1

B

B

B
4

3

2

Figure 3.11: A portion of a junction tree. A is an edge in the junction tree, C a node (clique) touching the

edge, A

1

; ::;A

K

the other edges from C, and B the subgraph on that side of A. The potential  

B!A

is to

be updated.

Proposition 2 Let  

B

i

= 
(f 

C

: C 2 B

i

g), where  

C

are the initial local potentials. If  

B

i

!A

i

=

m( 

B

i

;A

i

) for all edges A

i

shown in Figure 3.11, then after the propagation step in (3.12),

 

0

B!A

= m( 

B

;A)

where  

B

= 
(f 

C

: C 2 Bg) is the initial potential on subtree B.

Note that whenever B

i

is a leaf, then the initialization ensures that  

B

i

!A

i

= m( 

B

i

;A

i

) automatically.

As before, a full propagation consists of selecting a root node in the junction tree, propagation all

potentials from the leaves to the root, and then propagation all potentials from the root back down to the

leaves.

Theorem 4 After a full proposition,  

B!A

= m( 

B

;A) for any edge potential.

Once these potentials are updated, the potential on any clique is immediately available by simply com-

bining the local potentials on all incoming edges.

Theorem 5 Let C be a clique with edges A

1

; ::;A

K

, and associated subtrees B

1

; ::;B

K

. Let  

B

i

!A

i

denote

the edge potentials after propagation has completed. Then

m( ;C) = 
(f 

B

i

!A

i

: i = 1; ::;Kg)

From m( ;C), the marginal for any variable of interest can be obtained.

Discussion

There are two useful ways to store potentials. The �rst way stores the information using a single potential

per clique and edge. The second way uses two potentials on each edge. The two representations result in

two di�erent forms for the basic propagation step. Other than that, propagation in either case is roughly

the same.

For probability propagation,

[

Shachter et al., 1994

]

gives a nice description of the two di�erent forms of

propagation. Pearl's poly-tree propagation algorithm results from applying the Shafer-Shenoy propagation

to a poly-tree Bayesian network. The clique marginal algorithm falls out from the axiomatization given in

Section 3.2.2 of this thesis. The two axiomatizations (the one introduced by this thesis plus the Shafer-Shenoy

axioms), appear to span the propagation algorithms found in the literature.

It may seem that having a second axiomatization so close to the Shenoy-Shafer axioms is inconsequential.

My personal experience has been that it is extremely helpful. In another line of research, not directly related

to work in this thesis, I attempted (unsuccessfully) over the course of a couple years to derive an exact

propagation algorithm for lower and upper probabilities. A number of complications exist that make exact

propagation di�cult, and indeed up until the publication of

[

Chrisman, 1996

]

, no exact algorithms for this
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problem had been published

4

. In hindsight, considering the many unusual properties of lower probabilities,

it is actually quite surprising that exact propagation is possible at all for lower probabilities. Shortly after

�nding the axioms introduced here, by using the representation and updating framework in

[

Chrisman,

1995

]

I �nally discovered an exact propagation algorithm for 2-monotone lower probabilities. The algorithm

appears in

[

Chrisman, 1996

]

. Since I now know how it can be done, it is plausible that I would have

little trouble obtaining an analogous propagation algorithm from the Shenoy-Shafer axioms. Regardless of

whether this is the case, it was the existence of a second axiomatization and the alternative perspective it

o�ers that allowed me to discover a solution. I believe this experience alone demonstrates the usefulness of

a second set of axioms.

3.3 When Structural Decomposition is Insu�cient

In many cases, structural decomposition alone cannot reduce a problem into a feasible-to-solve size. In

many cases, the dependency structure between variables is too extensive, resulting in cliques with a large

number of variables. This renders the propagation scheme intractable since it scales exponentially with the

number of variables in the largest clique

5

. In other cases, the individual variables may take on too many

values so that a nonparametric potential representation is infeasible, or the variables may be continuous

with nonconjugate distributions. In all of these cases, it is almost always necessary to turn to approximation

techniques.

Many common approximation techniques for probabilistic models are based on Monte Carlo simulation

schemes. At the current time, the most popular Monte Carlo technique for graphical probabilistic models

is Gibbs sampling (

[

Geman and Geman, 1984

]

,

[

Pearl, 1987

]

,

[

Chavez and Cooper, 1990

]

,

[

Gelfand and

Smith, 1990

]

,

[

Gelfand, 1995

]

). Gibbs sampling is a special case of Markov chain Monte Carlo (MCMC)

sampling (

[

Neal, 1993

]

,

[

Tierney, 1994

]

), and is reviewed in Section 3.4. It is a very general technique that is

insensitive to the dependency structure between variables and does not rely on any conjugacy assumptions

about distributions. Also, its simplicity is appealing. It applies muchmore generally than just to probabilistic

models, but it is especially well-suited to graphical probabilistic models with their very localized dependency

structure. To use pure Gibbs sampling, it is only necessary to identify the dependency structure between

variables, and not necessary to triangulate graphs or �nd a junction tree. While this makes it that much

easier to apply, it also means that the structural decomposition that is possible cannot be fully leveraged.

In Section 3.4.2, I review some existing techniques for combining structural decomposition with Gibbs

sampling ideas in an attempt to harness the relative strengths of each. While I do not utilize these techniques

in this thesis, the methods in Chapter 4 can be viewed as a new method for combining Gibbs style sampling

with propagation, so the review provides a relative point of comparison, as well as acquainting the reader

with previously proposed methods.

Although they are mentioned in Section 3.4, I do not review other Monte Carlo techniques such as

logic sampling (

[

Henrion, 1988

]

) and importance sampling (

[

Shachter and Peot, 1989

]

). While these and

related approaches have received substantial attention in the Arti�cial Intelligence literature, straight logic

sampling cannot be applied to problems with continuous variables (as in the current case) and both are

highly ine�cient when the probability of observations is low. Because they are not used directly in this

thesis, I do not review them in any detail here. It should be noted, however, that importance sampling can

be quite useful in probabilistic contexts other than approximating graphical networks.

When structural decomposition is insu�cient because variables are continuous with nonconjugate dis-

tributions, or because individual variables take on too many values, another approximation technique is

iterative dynamic discretization. This technique is the topic of Chapter 4. It is designed to leverage the

results of structural decomposition while implementing an iterative approximation scheme with similarities

to Gibbs sampling.

4

[

Tessem, 1992

]

published an approximation to exact propagation for a very special case, and

[

Fertig and Breese, 1993,

Breese and Fertig, 1991

]

published an exact algorithm for an even more special case, while

[

Cano et al., 1991

]

published an

algorithm for a less tractable and more general case. See

[

Chrisman, 1996

]

for details.

5

More exactly, it scales linearly with the number of possible values for a clique assignment, which in turn scales exponentially

with the number of variables.
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3.4 Gibbs Sampling

Gibbs sampling occasionally goes by the name straight simulation (

[

Pearl, 1987, Pearl, 1988, Chavez and

Cooper, 1990, Dagum and Horvitz, 1993, Monti and Cooper, 1996

]

), although the name Gibbs Sampling is

far more predominant. A Gibbs system is equivalent to a Markov �eld with everywhere positive probability

(

[

Moussouris, 1974

]

), which is no doubt the source of the name, but since the fundamental procedure is not

tied only to Gibbs systems the naming is somewhat unfortunate and straight simulation would be a better

name. Another good name might be one-variable-at-a-time simulation. However, since the name Gibbs

sampling is now so highly entrenched in existing literature, it would be confusing to call it by any other

name.

The Gibbs sampling algorithm is the simplest of the Markov chain Monte Carlo algorithms (

[

Neal, 1993

]

).

A description of the algorithm appeared as early as

[

Hastings, 1970

]

, but it �rst gained prominence with

the publication of

[

Geman and Geman, 1984

]

, where it was applied to image restoration (with a Gibbs

system, and probably the original source of the name). It is a very natural approximation to apply to

graphical probabilistic models, and its use was in this context was introduced by

[

Pearl, 1987

]

, described

also in

[

Pearl, 1988, Section 4.4.3

]

. Theoretical convergence rates for Bayesian networks are analyzed in

[

Chavez and Cooper, 1990

]

and

[

Dagum and Horvitz, 1993

]

. The technique was popularized in the statistics

community with the publication of

[

Gelfand and Smith, 1990

]

and is now among the most popular inference

method. Its wide applicability and simplicity have contributed to its popularity.

Suppose x = hx

1

;x

2

; :::;x

n

i is a set of random variables, and one wishes to compute inferences over

the joint probability distribution p(x

1

; x

2

; :::; x

n

). If the variables are continuous, then p(�) is a probability

density, if they are discrete, it is a probability distribution. Denote the joint probability space by (
;F),

where 
 is the set of all possible joint con�gurations, and F is a �-algebra on 
 (in the discrete case,

F = 2




). The inferences of interest are usually expectations relative to p, or marginal distributions such as

p(x

1

), p(x

2

), etc.

Monte Carlo techniques approximate inference by drawing joint con�gurations

6

at random from p, and

averaging over the sample. The more samples drawn, the closer one can expect the sample frequencies to

match the distribution p.

However, in most cases of interest, drawing independent samples from the distribution of interest is

very di�cult. To see this, consider a Bayesian network. The distribution of interest is p(x

1

; :::; x

n

) =

P (x

1

; :::; x

n

je), where e is observed evidence, often located in the leaves of the network, and P (x

1

; :::; x

n

) is

the joint prior distribution on the network without any evidence. While it is trivial in a Bayesian network to

generate independent samples from P (x

1

; :::; x

n

)

7

, it is almost always very di�cult to generate independent

samples fromP (x

1

; :::; x

n

je), the distribution of interest. One method termed logic sampling is to sample from

P (x

1

; :::; x

n

), and then throw away all samples that don't match the evidence exactly (

[

Henrion, 1988

]

). This

requires an average of 1=P (e) iterations per sample, which is generally unacceptable. A small improvement

is to use importance sampling (

[

Shachter and Peot, 1989

]

), which enforces x

i

= e

i

for each observed variable

x

i

when the sample is being generated, and then weights each sample according to the probability of the

evidence given the other sampled variable values. However, a few samples generally dominate importance

sampling averages | generally those that would probably have been kept during logic sampling | making

it only a small improvement over logic sampling.

Markov chain Monte Carlo methods overcome the di�culty of drawing independent samples from a

distribution of interest by sacri�cing the independence of samples to obtain an e�cient sampling procedure.

A sequence of dependent samples are drawn from the distribution of interest in a way that guarantees

that the asymptotic distribution of the samples is the same as the distribution of interest. By sacri�cing

independence, e�cient sampling procedures can often be obtained.

The Gibbs sampling algorithm works by changing the value of only one component in a con�guration at

a time. An initial assignment to all the variables is �rst obtained, perhaps arbitrarily

8

. In one iteration,

6

A joint con�guration is simply an assignment of a value to every variable in the network.

7

One simply samples each variable in the order indicated by the directed arcs of the Bayesian network, with each sample

based on the distribution conditioned on the value already selected for that node's parents.

8

One may also consider employing an expensive method such as logic sampling or rejection sampling for obtaining the �rst
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a single variable, x

i

, is selected and a new value for x

i

is drawn at random from p(x

i

jx

j 6=i

). All the other

variables retain their previous values. Thus, two consecutive samples produced by Gibbs sampling di�er at

most by one component.

One simple form of Gibbs sampling visits each variable in the network sequentially. On the �rst iteration,

the value of x

1

is resampled from p(x

1

jx

2

; :::; x

n

). The second iteration samples x

2

from p(x

2

jx

1

; x

3

; x

4

; :::; x

n

).

The n

th

iteration samples x

n

from p(x

n

jx

1

; :::; x

n�1

), and the (n + 1)

th

iteration again samples x

1

from

p(x

1

jx

2

; :::; x

n

) and the process repeats until an acceptable approximation is obtained. Another variant of

Gibbs sampling selects the variable to resample at random.

Each iteration of the Gibbs sampling algorithm can be described as a transition from one joint con�g-

uration, x 2 
, to another joint con�guration y 2 
, according to a probability h

i

(x; Y ), the probability

of generating a state y 2 Y 2 F next given that the current con�guration is x 2 
. The subscript on h

i

identi�es the iteration of the algorithm. The version of Gibbs sampling that visits each variable sequentially

alternates between n di�erent h

i

's. The version that chooses the variable to resample at random can be

characterized as using the same transition probability at every iteration. In the second case, the subscript

can be omitted from h, and h is said to be homogeneous. A homogeneous h can also be obtained in the �rst

case by considering one pass through all the variables to be a single iteration, so that

9

h = h

1

� h

2

� ::: � h

n

is a homogeneous transition probability for each combined iteration. In fact, any repeating pattern of visits

to all variables will yield a homogeneous transition probability for the process. I will call any sampling

pattern that can be equated to a homogeneous transition probability at some level a homogeneous sampling

pattern (nonstandard terminology). Both variants of Gibbs described above, cycling through each variable

and selecting the variable at random, are examples of homogeneous sampling patterns.

The transition probability, h

i

, together with the initial con�guration or a description of the distribution

from which the initial sample is drawn de�nes a Markov chain. Hence the name Markov chain Monte Carlo

(MCMC). Gibbs sampling (i.e., changing one component at a time) is only one way to obtain an appropriate

Markov chain, and so it is a special case of MCMC.

The m

th

stage transition probability, h

m

i

(x; Y ), is the probability of reaching Y in m steps when starting

from x on the i

th

iteration. It is simply given by h

m

i

= h

i

� h

i+1

� ::: � h

i+m�1

. A stationary distribution �

is one in which for all i

�(Y ) =

Z

h

i

(x; Y )�(x)dx

Once a system reaches a stationary distribution, it will remain there inde�nitely. Any Markov chain formed

by sampling one variable at a time from p(x

i

jx

j 6=i

) has p as a stationary distribution. In general a Markov

chain may not have a unique stationary distribution, but in the case of Gibbs sampling, if variables are sam-

pled in an appropriate order, there is a unique distribution and the process converges to it. The fundamental

Gibbs sampling theorem (

[

Tierney, 1994

]

) is as follows:

Theorem 6 (Gibbs Sampling Theorem) The asymptotic distribution of con�gurations visited by Gibbs

sampling approaches p whenever

1. p assigns a positive probability density to every joint con�guration.

2. All variables are visited in a homogeneous sampling pattern.

Other variations on the theorem exist as well.

[

Geman and Geman, 1984

]

prove that for �nite state spaces

and everywhere positive probability, Gibbs sampling converges from all starting con�gurations as long as

all variables are visited in�nitely often (i.e., a homogeneous sampling pattern is not required). I have not

found a proof in existing literature of convergence in this nonhomogeneous case with a general (non�nite)

state space.

It is often useful when applying Gibbs sampling to an application to understand the basic outline of

the proof of the above theorem. As discussed above, p is a stationary distribution of the Markov chain

sample from the distribution of interest. If this extra work is done for the �rst sample, then the MCMC sampling process

is started from the ergodic distribution, so the time one would otherwise have to wait for the process to reach its ergodic

distribution is eliminated.

9

(h

i

� h

j

)(x;Y ) =

R

h

i

(x; z)h

j

(z; Y )dz, and � is left-associative.



3.4. GIBBS SAMPLING 70

resulting from Gibbs sampling. Also, because p is everywhere positive, any subset of states A with p(A) > 0

is reachable within a �nite number of steps since we can change each component one at a time to match A.

This condition is called p-irreducibility. A basic result of Markov chain theory (

[

Tierney, 1994, Theorem 1

]

)

states that if h is p-irreducible and p is an invariant distribution of h, then h is positive recurrent (meaning

p is the unique invariant distribution). Furthermore, the positivity of p ensures that h is also absolutely

continuous with respect to p, and with this extra condition, h is Harris recurrent

[

Tierney, 1994, Corollary 1

]

,

meaning that every subset of con�gurations A with p(A) > 0 is visited in�nitely often with probability 1.

The stochastic nature of Gibbs sampling also ensures aperiodicity. The Aperiodic Ergodic Theorem (

[

Meyn

and Tweedie, 1993

]

) ensures that a Harris recurrent, aperiodic Markov chain with invariant distribution

p approaches p asymptotically (in total variation norm) from any starting con�guration (

[

Tierney, 1994,

Theorem 1

]

).

The primary operation performed during the Gibbs sampling algorithm is the operation of drawing a

value of x

i

from p(x

i

jx

j 6=i

). This is especially convenient in the case of a graphical probabilistic network since

x

i

is conditionally independent of all variables in the network given its Markov boundary. In an undirected

graph, the Markov boundary is simply the set of variables that share an edge with x

i

. For example, in

the undirected network of Figure 3.1 on Page 48, the Markov boundary of t

1

is ft

0

; s

0

; s

1

; t

2

g. Therefore,

p(t

1

jt

0

; s

0

; s

1

; t

2

; s

2

; t

3

; s

3

; :::) = p(t

1

jt

0

; s

0

; s

1

; t

2

). Thus, sampling only involves a local subset of variables.

This usually means that the form of p(x

i

jx

j 6=i

) is considerably simpli�ed. Gibbs sampling is therefore very

well-suited for use in graphical probabilistic networks.

There are two requirements that must be met in order for Gibbs sampling to be usable:

1. The joint probability density must be everywhere positive.

2. It must be possible to sample from p(x

i

jx

j 6=i

) e�ciently.

The �rst condition can often be relaxed in special cases by reasoning directly about the conditions discussed

above that lead to Harris recurrence. This is usually just a matter of ensuring p-irreducibility (which is

easier to verify) over the portion of the state space that has positive probability density (

[

York, 1992

]

), since

the other conditions are pretty much automatically satis�ed in a Gibbs sampling application. When only

positive recurrence can be assured (e.g., when h is not absolutely continuous with respect to p), then the

convergence theorem holds only for p-almost all starting con�gurations (

[

Tierney, 1994, Theorem 1

]

). Thus,

the �rst requirement seldom restricts the applicability of Gibbs sampling to practical problems. However,

even when p-irreducibility is obtained, the convergence rate of Gibbs sampling is critically dependent on the

magnitude of the smallest probability density (

[

Chavez and Cooper, 1990, Dagum and Chavez, 1993

]

).

The second requirement can be much more di�cult to overcome. Sampling from the conditional dis-

tribution, if it can be done e�ciently at all, may require any number of advanced sampling techniques,

such as those discussed in

[

Devroye, 1986

]

. As already mentioned, graphical probabilistic networks simplify

this portion of the problem greatly by isolating the problem to a variable and its Markov boundary, but

in general, the step can still be quite di�cult. In the time-series segmentation domain, this step is highly

nontrivial and is addressed in Chapter 4.

Once Gibbs sampling can be applied, the rate of convergence becomes the primary concern. On �nite

state spaces

10

, Gibbs sampling is known to converge geometrically (for a �xed distribution) to the asymptotic

distribution (

[

Geman and Geman, 1984

]

,

[

Gelfand and Smith, 1990

]

,

[

Neal, 1993

]

). As good as this sounds,

the rate of convergence does not scale well with 1=p

�

, where p

�

is the smallest joint probability (density)

(

[

Chavez and Cooper, 1990, Dagum and Chavez, 1993, Dagum and Horvitz, 1993

]

). However, all known

theoretical bounds are much too large to be of any pragmatic use anyway, so this is primarily academic.

Therefore, meaningful evaluations of Gibbs samplingmethods, and MCMC methods in general, are currently

restricted to empirical investigations. Metrics to detect convergence are often used in practice and are an

active area of study (

[

Brooks and Roberts, 1995, Cowles and Carlin, 1996

]

); however, these are by their very

nature just heuristics.

10

Some similar convergence are available for continuous state spaces, but involve complicated conditions such as compactness

of the state space, various forms of measurability, etc

[

Liu, 1991, Tierney, 1994, Rosenthal, 1995a, Rosenthal, 1995b, Baxter

and Rosenthal, 1995

]

.
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3.4.1 Focused Gibbs Sampling

This section describes a variant of Gibbs sampling that would seem to have many uses, but which I have not

found mentioned previously in the literature. This variant provides a very natural way to combine Gibbs

sampling with exact propagation techniques. The Markov chain Monte Carlo aspect of this algorithm is,

however, pure Gibbs sampling.

The idea is to simply partition the variables in a model into two groups: x = (y; z). The variables in y

are sampled using Gibbs sampling, while for each setting of values to y, the remaining distribution over z is

computed using exact methods.

Let the sampled variables be y = hy

1

;y

2

; ::;y

n

i. During one step of focussed Gibbs sampling, a variable

y

i

is selected, and a new value for y

i

is drawn according to p(y

i

jy

j 6=i

). Thus, the stochastic part of the

algorithm is the same as Gibbs sampling, but over the space 


y

rather than over the space 


x

.

To obtain p(y

i

jy

j 6=i

), one must marginalize out the variables in z:

p(y

i

jy

j 6=i

) =

Z

p(y

i

; dzjy

j 6=i

) =

Z

p(y

i

jy

j 6=i

; z)p(dzjy

j 6=i

)

Suppose a variable y

i

has neighbors

11

y

0

and z

0

, where y

0

is a subset of the variables comprising y, and

z

0

is a subset of the variables comprising z. Then p(y

i

jy

j 6=i

; z) = p(y

i

jy

0

; z

0

), so

p(y

i

jy

j 6=i

) =

Z

p(y

i

jy

0

; z

0

)p(dz

0

jy

j 6=i

)

To draw a value for y

i

from this distribution, one can �rst draw a value z

0

from p(z

0

jy

j 6=i

), and then draw

a value for y

i

from p(y

i

jy

0

; z

0

). Then y

i

� p(y

i

jy

j 6=i

).

Focussed Gibbs sampling requires the extra operation (not required by pure Gibbs sampling) of drawing

z

0

� p(z

0

jy

j 6=i

). It is for this operation that propagation is required. The sampled values y

j 6=i

are inserted

into a propagation network as \evidence," and propagation used to update potentials. The distribution

p(y

i

; y

0

; z

0

jy

j 6=i

) is then simply the product of all clique potentials containing y

i

divided by the product of

all separator potentials containing y

i

. To pick a value z

0

from p(z

0

jy

j 6=i

), one simply picks (y

i

; y

0

; z

0

) �

p(y

i

; y

0

; z

0

jy

j 6=i

) and then returns just z

0

.

Convergence properties for this process are the same as for pure Gibbs sampling since focussed Gibbs is

an instance of pure Gibbs sampling, but applied to the submodel p(y) rather than to the full model p(y; z).

It is commonly stated within the literature on Gibbs sampling that convergence is highly dependent on the

number of variables (e.g.,

[

Jensen et al., 1995, Gelfand, 1995, Neal, 1995

]

). Doubling the number of variables

often more than doubles the necessary run times. Focused Gibbs sampling restricts the Gibbs sampling

part to a smaller set of variables than pure Gibbs sampling, handling the remaining variables with exact

methods. Because of the smaller number of variables, and the potential to break troublesome correlation

structures with a well placed selection of sampled variables, focused Gibbs sampling has the advantage of

reducing the number of iterations required relative to full Gibbs sampling. The full and precise extent of

this advantage in general has not yet been studied and left here as future work. Once again, the process is

still Gibbs sampling, only on a smaller set of variables.

3.4.2 Blocking-Gibbs Sampling

Gibbs sampling changes the value of one variable at a time at each iteration. It is possible to reformulate

the variables that de�ne a model by grouping existing variables into blocks. In the reformulated model, each

block acts as a variable, and Gibbs sampling can be applied directly to this \blocked" model. The result is

called Blocking Gibbs (

[

Amit and Grenander, 1991, Hills and Smith, 1992, Liu et al., 1994, Besag et al., 1995,

Jensen et al., 1995, Roberts and Sahu, 1996

]

).

The convergence properties and rates of Gibbs sampling depend greatly upon the blocking structure

of the underlying model. Generally, the less correlated individual blocks are, the faster Gibbs sampling

converges. It is generally accepted that larger blocks lead to faster convergence (

[

Amit and Grenander, 1991,

11

A neighbor here is a variable in y

i

's Markov boundary.
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Roberts and Sahu, 1996

]

), but the problem of drawing a value assignment for a block conditioned on all

other variables in the model is typically more di�cult for a larger block. For example, if this could be

done e�ciently for the block consisting of all variables in the model, it would be unnecessary to turn to

a Markov chain technique to generate samples. Despite the common wisdom, there are some known cases

where blocking can actually reduce convergence rates

[

Roberts and Sahu, 1996

]

.

If one groups highly correlated variables into a single block, then the random value generator that must

draw a value from the block is faced with a complex correlation structure, and that task becomes more

di�cult. Suppose, however, that a certain block contains a large number of variables, but the interrela-

tionships on the subgraph consisting only of these variables has a convenient graphical structure (e.g., a

poly-tree, or more generally, something with small cliques after it is triangulated). If the distributions on

those variables have the appropriate conjugacy properties to permit the application of exact propagation,

then the distribution within this block (conditioned on all variables outside the block) can be propagated

exactly. After propagation, each clique contains the marginal distribution. Samples can then be drawn using

forward sampling from this exact distribution. In other words, within a block, exact propagation may be

used to enable to sampling of a value for that block. This idea was introduced by

[

Jensen et al., 1995

]

.

Blocking Gibbs typically uses nonoverlapping blocks, but this is not entirely necessary | blocks may

also overlap

[

Jensen et al., 1995

]

. For a strictly positive distribution, the irreducibility argument given in

Section 3.4 still holds, so convergence is still guaranteed.

In some models containing zero probability con�gurations, pure Gibbs sampling may result in an irre-

ducible Markov chain. In these cases, the asymptotic guarantees do not hold. However, often blocking can

be applied to solve this problem by placing functionally dependent variables in the same block and restoring

irreducibility.

Blocking Gibbs sampling is not used in this thesis, but has been reviewed here since it is an important

issue in practice when Gibbs sampling is applied. Note that both focused Gibbs sampling and blocking

Gibbs sampling are simply instances of the general Gibbs sampling procedure | they are simply variations

in the component arrangement that is used.

3.5 Proofs (Chapter Appendix)

The proofs for the propositions and theorems appearing in Chapter 3 are given in this chapter appendix.

The results are motivated and discussed in the text of the previous chapter sections, and no additional

results appear here. The theorem statements are repeated (with the same numbering as in the text) and

proofs given. The chapter appendix should be skipped by any reader not interested in the intricate details

of the proofs.

Proposition 1 (Cancellation): c(	

1

[	

2

; 	

2

[	

3

) = c(	

1

; 	

3

)

Proof: Let 	

1

= f 

0

g [	

0

1

and 	

2

= f 

2;1

; :::;  

2;m

g. By repeatedly applying Axiom 4,

c(	

1

[	

2

; 	

2

) = c(fc(:::fc(fc(f 

0

;  

2;1

g; f 

2;1

g);  

2;2

g; f 

2;2

g); :::;  

2;m

g; f 

2;m

g)g [	

0

1

)

By setting B = V in Axiom 5, applying Axiom 2, and renaming subscripts, we obtain

c(f 

0

;  

2;1

g; f 

2;1

g) =  

0

Plugging this into the above equation m times obtains

c(	

1

[	

2

; 	

2

) = c(f 

0

g [	

0

1

) = c(	

1

)

Finally, by Axiom 4

c(	

1

[	

2

; 	

2

[	

3

) = c(fc(	

1

[	

2

; 	

2

)g; 	

3

) = c(fc(	

1

)g; 	

3

) = c(	

1

; 	

3

)
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Theorem 1: Suppose for each clique C 2 C of a decomposable graph G, a potential  

C

that is local to C

is given, and that these potentials are pairwise consistent. Then there is a unique Markov potential,

 , having these marginals (i.e., such that m( ;C) =  

C

).

Proof: If G is complete, then the theorem trivially holds. Otherwise, pick one clique C

1

and form two

subsets of V, A = C

1

and B =

S

(C � C

1

). Then (A;B) decomposes G and G

B

is a smaller subgraph.

Assume by induction that the theorem holds for G

B

, and let  

B

be the unique potential on G

B

. Also set

 

A

=  

C

1

.

The potential is  = c(f 

A

;  

B

g; fm( 

A

;B)g). By Axiom 5, m( ;B) =  

B

. Since  

A

and  

B

are

consistent, m( 

A

;B) = m( 

B

;A), so  = c(f 

A

;  

B

g; fm( 

B

;A)g) and again by Axiom 5, m( ;A) =

 

A

. So a potential with the given clique margins exists.

To show uniqueness, suppose  and  

0

are both Markov and agree on clique marginals (i.e., m( ;C) =

m( 

0

;C) for C 2 C). Then  

A

=  

0

A

, since A is a clique. By the induction,  

B

=  

0

B

. And by Axiom 1,

 

A\B

=  

0

A\B

. Thus,

 

0

= c(fm( 

0

;A);m( 

0

;B)g; fm( 

0

;A \B)g)

= c(fm( ;A);m( ;B)g; fm( ;A \Bg)g)

=  

The �rst line holds because  

0

is Markov. The second line because  and  

0

agree on A, B, and A \B as

established above. And the third line holds because  is Markov. Therefore  is unique.

Theorem 2: A propagation step does not change  , i.e., c(	

C

; 	

S

) = c(	

0

C

; 	

0

S

).

Proof: First, note the following:

c(f 

0

B

g; f 

0

A\B

g) = c(fc(f 

B

;  

0

A\B

g; f 

A\B

g)g; f 

0

A\B

g)

= c(f 

B

;  

0

A\B

g; f 

A\B

;  

0

A\B

g)

= c(f 

B

g; f 

A\B

g)

The �rst line simply expands  

0

B

according to (3.10b). The second line uses Axiom 4. The third line applies

Proposition 1.

Let  be the potential before propagation and  

0

be the potential after propagation. Then

 = c(f 

B

g [	

C�B

; f 

A\B

g [	

S�A\B

)

= c(fc(f 

B

g; f 

A\B

g)g [	

C�B

; 	

S�A\B

)

= c(fc(f 

0

B

g; f 

0

A\B

g)g [	

C�B

; 	

S�A\B

)

= c(	

0

C

; 	

0

S

) =  

0

The �rst line simply writes out  as the Markov combination of its local potentials. The second line applies

Axiom 4. The third line applies (3.13), and the fourth line reapplies Axiom 4. Thus  =  

0

| the joint

potential is unchanged by the propagation step.

Lemma 1 After a propagation step from A to B, where A and B are neighbor nodes in the junction tree,

the resulting  

0

A\B

is consistent with  

A

. Furthermore, if before the propagation,  

A\B

and  

B

were

consistent, then the resulting  

0

B

is also consistent with  

A

and with  

0

A\B

.

Proof: By Axiom 3, m( 

0

A\B

;A) =  

0

A\B

, and directly from (3.10a), m( 

A

;A \B) =  

0

A\B

, so by

de�nition,  

0

A\B

is consistent with  

A

.

Now, suppose  

A\B

and  

B

are consistent before the propagation.

m( 

0

B

;A \B) = m(c(f 

B

;  

0

A\B

g; f 

A\B

g);A \B)

= m(c(f 

B

;  

0

A\B

g; fm( 

B

;A \B)g);A \B)

=  

0

A\B

by Axiom 5.

= m( 

0

A\B

;B)
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so  

0

B

and  

0

A\B

are consistent.

Theorem 3: After a full propagation,  

C

= m( ;C) for all local potentials  

C

in the junction tree.

Proof: By the �rst part of Lemma 1, after the collect evidence step, all local edge potentials are consistent

with the local potential at the end point furthest from the root. Then, as a result of this, by the second

part of Lemma 1, after the distribute evidence step all neighboring nodes are consistent. Therefore, by

Theorem 1, the local potentials equal the marginals of the �nal joint combined potential. Note that by

Theorem 2, the �nal combined joint potential is equal to the initial combined joint potential.

Shenoy-Shafer Axiomatization

Although the correctness of propagation within the Shenoy-Shafer framework is demonstrated in

[

Shenoy

and Shafer, 1990

]

, I have altered and generalized the presentation somewhat and therefore feel it is necessary

to reprove the results as stated in this thesis.

Lemma 2 Let  

B

i

denote potentials local to B

i

. If C is a clique node in a junction tree that separates

subtrees B

i

, i = 1; ::;K, then

m(
(f 

B

i

: i = 1; ::;Kg);C) = 
(fm( 

B

i

;C) : i = 1; ::;Kg)

Proof: For readability, I will use 
 in an in�x manner here. First, consider subtrees B

0

i

= B

i

[C. These

subtrees are also separated by C, and  

B

i

is also local to B

0

i

. By the junction tree property, if C separates

B

0

i

from B

0

j

, then C � B

0

i

\B

0

j

, therefore, C = B

0

i

\B

0

j

for i; j 2 f1; ::;Kg.

First, consider only two of the subtrees, say B

1

and B

2

.

m( 

B

0

1


  

B

0

2

;C) = m( 

B

0

1


  

B

0

2

;B

0

2

\C) ;C = B

0

2

\C

= m(m( 

B

0

1

;B

0

2

)
  

B

0

2

;C) ; by Axioms 1,3, 8

= m(m( 

B

0

1

;B

0

1

\B

0

2

)
  

B

0

2

;C) ;  

B

0

1

local to B

0

1

, Axiom 3

= m(m( 

B

0

1

;C)
  

B

0

2

;C) ;C = B

0

1

\B

0

2

= m( 

B

0

1

;C) 
m( 

B

0

2

;C) ; Axioms 1,8

Now, taking  

B

0

1


  

B

0

2

as a single potential (i.e., B

0

1

[B

0

2

as a single subtree), Axiom 7 extends this to K

subtrees.

Proposition 2: Let  

B

i

= 
(f 

C

: C 2 B

i

g), where  

C

are the initial local potentials. If  

B

i

!A

i

=

m( 

B

i

;A

i

) for all edges shown in Figure 3.11, then after the propagation step in (3.12),

 

0

B!A

= m( 

B

;A)

where  

B

= 
(f 

C

: C 2 Bg) is the initial potential on subtree B.

Proof: First, let  

B

i

denote the initial potential 
(f 

C

0

: C

0

2 C;C

0

� B

i

g), and similarly for  

B

. By

the assumptions in the theorem,  

B

i

!A

i

= m( 

B

i

;A

i

).

In Figure 3.11, the junction tree property ensures that A

i

= B

i

\C, so that

m( 

B

i

;A

i

) = m( 

B

i

;B

i

\C)

= m(m( 

B

i

;B

i

);C) by Axiom 3

= m( 

B

i

;C)

Thus, from this and the assumptions of the theorem,

 

B

i

!A

i

= m( 

B

i

;C) (3.13)
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We have

 

0

B!A

= m(
(f 

B

i

!A

i

; i = 1; ::;Kg[ f 

B!A

g);A) ; Equation (3.12)

=  

B!A


m(
(f 

B

i

!A

i

: i = 1; ::;Kg);A) ; Axiom 8

=  

B!A


m(
(fm( 

B

i

;C) : i = 1; ::;Kg;A) ; by (3.13)

=  

B!A


m(m(
(f 

B

i

: i = 1; ::;Kg);C);A) ; by Lemma 2

= m( 

C

;A)
m(
(f 

B

i

: i = 1; ::;Kg);A) ; Init., Axiom 3, A = A \C

= m(
(f 

C

: C 2 C;C � Bg);A) ; Axiom 3 & def. of  

B

i

= m( 

B

;A) ; Def.  

B

Theorem 4: After a full proposition,  

B!A

= m( 

B

;A) for any edge potential.

Proof: Assume a full propagation starts at the leaves, propagates to a root node in the junction tree, and

then propagates away from the root node. Whenever an edge  

B!A

is updated, the edges  

B

i

!A

i

in

Figure 3.11 will have already been computed. Since initialization sets  

B!A

= m( 

B

;A) when B is a leaf,

this means that the invariant in Proposition 2 always holds while the full propagation is taking place.

Theorem 5: Let C be a clique with edges A

1

; ::;A

K

, and associated subtrees B

1

; ::;B

K

. Let  

B

i

!A

i

denote the edge potentials after propagation has completed. Then

m( ;C) = 
(f 

B

i

!A

i

: i = 1; ::;Kg)

Proof: Let A

i

be all edges emanating from C, and B

i

the associated subtrees. Again let  

B

i

and  

C

refer to initial local potential assignments (before propagation). Let  

B!A

;  

B

i

!A

i

refer to edge potentials

after the full propagation.


(f 

B

i

!A

i

: i = 1; ::;Kg) = 
(fm( 

B

i

;A

i

) : i = 1; ::;Kg) ; By Theorem 4

= 
(fm( 

B

i

;C) : i = 1; ::;Kg) ; Since C \B

i

= A

i

= m(
(f 

B

i

: i = 1; ::;Kg);C) ; by Lemma 2

= m(
(
(f 

C

0

: C

0

2 C;C

0

� B

i

g) : i = 1; ::;Kg);C) ; Def. of  

B

i

.

= m(
(f 

C

0

: C

0

2 Cg);C) ; by Axioms 7,9

= m( ;C) ; Initialization

Theorem 6: The asymptotic distribution of con�gurations visited by Gibbs sampling approaches p when-

ever

1. p assigns a positive probability density to every joint con�guration.

2. All variables are visited in a homogeneous sampling pattern.

Proof: Proof is given in text, immediately following theorem statement, or see

[

Tierney, 1994, Section 3

]

.



Chapter 4

Iterative Dynamic Discretization

In Chapter 3, the inherent structure of the time-series segmentation formulation was harnessed to decom-

pose an enormous optimization problem into a collection of smaller (3-dimensional) optimization problems.

Although structural decomposition results in a substantial simpli�cation, the resulting subproblems are still

too large to solve exactly. The remaining di�culty in this case is due to the presence of continuous variables

representing transition times (the t

i

's). So, while each subproblem involves only three variables, there is

still an in�nite number of possible instantiations under consideration for each subproblem. Furthermore,

the distributions involved in each local subproblem are not restricted to any simple parametric family. For

example, the evaluation of data �t can jump around substantially as a function of proposed transition time,

and the shape recognizers of the HSSMM (Section 2.2.2) must be called to evaluate each proposed tran-

sition time. This disquali�es the use of existing parametric schemes for handling real-valued variables in

probabilistic graphical networks (e.g.,

[

Kiiveri et al., 1984

]

,

[

Lauritzen and Wermuth, 1989

]

,

[

Kenley, 1986

]

,

[

Shachter and Kenley, 1989

]

,

[

Whittaker, 1990

]

,

[

Geiger and Heckerman, 1994a

]

,

[

Buntine, 1994

]

,

[

Driver and

Morrell, 1995

]

).

This chapter introduces and explores the use of iterative dynamic discretization. The technique is appli-

cable for solving general Bayesian networks with continuous variables and arbitrary distributions. The same

technique can also be applied to a discrete variable with a very large number of possible values, although

I do not experiment with such a case in this thesis. Iterative dynamic discretization selects a �nite num-

ber of possible values for each continuous variable in a network and constructs an approximate model by

substituting these �nite-valued variables for the original continuous ones. Standard nonparametric methods

can thus be applied to solve the discretized problem exactly. The choice of discretization is dynamic in that

information available at run-time in
uences the choice of the possible values for each continuous variable,

and it is also iterative in that the discretization is successively improved based on the information learned

from previous iterations. It therefore quali�es as a special case of iterative model construction (Section 1.8.3).

4.1 Desired Discretization

A natural way of handling continuous variables in a probabilistic model is to �nely and uniformly discretize

the possible values that a variable can take on, and to use standard nonparametric techniques to compute

quantities within the model. However, as the number of possible discrete values that a variable can take on

grows, the complexity of inference algorithms for solving graphical networks also grows substantially, making

the �ne-grained uniform discretization an unattractive approach in most circumstances. Additionally, when

a variable is not bounded, additional complications arise in choosing the range of the variable to discretize.

Often, a small number of discrete values may su�ce as a replacement for a real-valued variable, provided

that \good" discrete values are used. For example, if an unobserved variable is to represent body temper-

ature, a uniform discretization of all temperatures between 28

�

C and 44

�

C at a 4

�

C resolution would not

be an optimal choice. It would be better to place many values around 37

�

C spaced very closely together,

with only a few values distant from 37

�

C. This would allow us, with the same number of discrete points, to

obtain a higher resolution where it is likely to matter. However, if a patient is already showing extreme 
u

76
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symptoms, it may be better increase the resolution around 40

�

C and decrease it elsewhere. This exempli�es

a dynamic nonuniform discretization.

The challenge to choosing a nonuniform discretization is to identify where the resolution should be the

greatest, and by how much. As the above example highlights, the appropriate discretization depends on the

speci�c problem instance. However, the problem has an inherent chicken-and-egg 
avor to it. If we could

know in advance where the posterior probability mass would fall, we would discretize more �nely where the

posterior probability mass is most highly concentrated. Of course, if we know the posterior probabilities,

there would be no need to discretize in the �rst place.

A good discretization has two desirable properties: The number of points is small and the points

are placed where it matters.

A primary technical challenge of this chapter, and to some extent Chapters 5 and 6, is to make the

phrase \where it matters" in the above statement precise. Ultimately, \where it matters" is tied to algorithm

performance | points should be chosen as to maximize the algorithm's ability and e�ciency of �nding good

solutions. However, because I am casting the task in an anytime framework (term coined by

[

Dean and

Boddy, 1988

]

), whereby the algorithm always makes available the best solution found so far and successively

improves its solution over a nonpredetermined amount of time, notions of performance are clearly not unique.

The maximization of short-term versus long-term algorithm performance is often in con
ict, and the best

tradeo� may depend on other circumstances surrounding the application.

Even if a precise performance evaluation can be appropriately speci�ed for an application, the way in

which this maps into the design decisions in an algorithm is seldom obvious, making a direct speci�cation of a

performance evaluation nonoperational and thus not-directly-usable in practice. A tenet of the discretization

approach is that the concept of \where it matters" is a more down-to-earth concept that often can be made

operational. This opens up the possibility for proposing multiple precise notions for what \where it matters"

could mean, thus focusing the endeavor of developing discretization algorithms into an investigation of how

various conceptions of \where it matters" translate into performance, either theoretically or empirically.

In the present case, the ultimate goal is to identify a global maximum a posteriori (or nearly MAP)

con�guration for the original continuous network. Ideally, the chosen discretization would include at least

one such con�guration. If so, it will be a MAP con�guration in the discrete network and any exact algorithm

on the discrete network will �nd it. This consideration nails down the notion of \where it matters" somewhat

since universally, regardless of speci�c performance evaluations for other cases, any discretization containing

a MAP con�guration has chosen points where it matters. As more discretized values are included, the chance

of including a good (nearly MAP) con�guration increases (although this may have positive or negative impact

on performance evaluations while the algorithm is searching through intermediate con�gurations). Frame

size must be traded o� against increasing computational requirements. Here I assume that the number of

points in the discretization (m

i

) is provided by the user. (

[

Wellman and Liu, 1994

]

addresses this tradeo�

by increasing m

i

over time in an anytime framework.) Our task is to �nd, for each variable x

i

, the m

i

best

points to include in the discretization.

4.2 A Framework for Selecting a Discretization

Consider how one might pick a reasonable discretization. Let x be a continuous variable. In the time-

series segmentation application, x corresponds to a single transition time, t

i

. Suppose f(x) is a (subjective)

probability density function encoding an estimation of what values appear promising. A larger value of f(x)

indicates that x is more promising, and f(x

1

) = 2f(x

2

) would indicate that x

1

is twice as promising as x

1

.

A (possible) semantics for de�ning \more promising" precisely is that f(x) is the belief that x = x is the

optimum (MAP) con�guration. For this to be mathematically meaningful, it is necessary to assume that

a unique optimum MAP con�guration exists, which does not necessarily have to be the case, but which I

will assume so that this semantics is meaningful. The origin of such an estimate is a central topic of the

remainder of this chapter, but for now simply suppose f(x) is given. For example, in Figure 4.2 a possible

f(x) is plotted. Because f(x) summarizes our knowledge about x, it forms a natural basis for choosing a

new discretization.



4.2. A FRAMEWORK FOR SELECTING A DISCRETIZATION 78

1. Choose an initial discretization for each continuous variable.

2. Initialize the parameters (i.e., the junction-tree potentials) of the discrete model.

3. Solve the discrete model using the exact methods of Chapter 3.

4. Post the optimum solution if this is the best found so far.

5. Select a variable, x

i

, to rediscretize.

6. Estimate f(x

i

).

7. Use f(x

i

) to select a new discretization (


^

x

i

) for x

i

. This yields a new discrete model.

8. Go to 2.

Figure 4.1: The iterative dynamic discretization algorithm (template).

The estimate f(x) provides us with a framework for considering a whole collection of iterative dynamic

discretization algorithms, and for understanding the relationship between possible algorithms. Di�erent

algorithms may di�er in how they derive this estimate, how they use it to select a new discretization, or how

they choose which variable(s) to rediscretize next.

4.2.1 The Algorithm Template

The iterative dynamic discretization algorithm (better described as the \algorithm template") is given in

Figure 4.1. This description actually speci�es a collection of algorithms. Each step of the algorithm template

can be instantiated in multiple di�erent ways (except, of course, Steps 4 and 8.). For example, there are

di�erent ways one might estimate f(x

i

) in Step 6, each of which yields a di�erent algorithm. Di�erent exact

algorithms could be used for Step 3, but shouldn't have any in
uence on the end result. Here I very brie
y

consider possible choices for a few of the key steps of the algorithm to give the reader a basic idea of the

variations possible. The remainder of this chapter explores possible variations in depth.

Choosing an Initial Discretization

(Step 1) In some domains (but not in the time-series segmentation domain), variables may have compact

domains (i.e., the values they can take on is bounded), and any combination of value assignments to the

individual variables denotes a legitimate con�guration. In such a case, an obvious initial discretization would

be to simply use a uniform discretization of each variable.

A better initial discretization may provide better solutions in a shorter amount of time, so one may be

motivated to utilize more sophisticated methods for this step. A more sophisticated algorithm might take

the distributions in the continuous model into account in some fashion. Also, since the variables in the

time-series task are neither bounded nor logically independent in this sense, a slightly more sophisticated

method is required.

Section 4.5 presents a growing method used by the remaining algorithms in this thesis. In this method,

a network is grown successively, with each variable rediscretized based on what looks promising given the

subnetwork grown to that point (the same estimate used in Step 6 of the algorithm). The growing method

is the only variant for the initial discretization step explored in this thesis.

Selecting a Variable (or Variables) to Rediscretize

(Step 5) There are at least three natural methods for implementing Step 5.

A �rst method selects a single variable on each pass through the algorithm, selecting the variables in

their natural order (i.e., x

1

on the �rst pass, x

2

on the second pass, etc.).

A second method is to select a single variable randomly each time through the loop.
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A third method is to rediscretize all continuous variables in the network simultaneously. This has the

computational advantage of having to perform only one propagation per total iteration (where one total

iteration corresponds to rediscretizing every variable in the network once). However, it has the disadvantage

that each rediscretization is based on less information than a one-by-one algorithm. The simultaneous

method can introduce numerical instabilities that must be addressed, and may cause constraints between

this step and other steps. In this thesis, we constrain the possible choices for Step 7 when simultaneously

rediscretizing in order to ensure numerical stability. See Page 113 in Section 6.6.

In this thesis, all of these variations are explored at one time or another. The theoretical analysis of

Chapter 5 covers the �rst and second methods (the third case is too di�cult to analyze). The empirical

investigation in Chapter 6 explores the �rst and third methods (the motivation for exploring the third

method is the computational savings).

Estimating f(x

i

)

(Step 6) The challenge here is to utilize the information obtained from solving or analyzing the discrete

model to derive a heuristic estimate in the form of a function f(x

i

) for what values of x

i

appear promising.

Conceptually, Step 6 is the most di�cult step of the algorithm.

Two basic methods are discussed in Section 4.4: the parents' posteriors method and theMarkov boundary's

posteriors method. These are then augmented by three possible alternative weighting schemes in Section 4.4.3

(uniform, sum, and max), yielding six total variations. The thesis, however, barely scratches the surface of

all possible variations for this step.

The intuition behind the Markov boundary's posteriors method is to set f(x

i

) equal to the posterior

distribution, p(x

i

jdata). However, only a discrete version of the latter is available, so various approximations

are introduced to estimate the posterior.

I essentially take the Markov boundary's posteriors method(s) as the most base method. The parents'

posteriors method is introduced �rst as an expository aid to give the �rst-time reader an idea of how an

estimate might be derived, and second, as a special case of the Markov boundary's posterior method that

is applicable during the growing stage, thus simplifying the discussion of that step. Furthermore, because

this is the most conceptually challenging step of the algorithm, the in-depth discussion of this step occurs

after the in-depth discussion of using the estimate so that the reader has a better idea of what the estimate

is about and how it is used before considering how it is estimated.

The theoretical and empirical analyses both utilize (only) the Markov boundary's posteriors method.

The theoretical analyses covers all three weighting regimes (uniform, sum, max) as well as a wide range of

other possibilities. The empirical investigations explore these three weighting regimes. Section 4.4.2 takes

the \sum weighting" (a.k.a., discrete posterior weighting) as the most basic of the possible variations.

Using f(x

i

) to Pick a Discretization

(Step 7) Once an estimate of what looks promising is derived, it must be used to select a new discretization.

A number of variations on this step are explored throughout the thesis.

The most basic method is random sampling and is discussed in Section 4.3. This is the only method

covered by the asymptotic analysis, and is the method used in the \pure" version explored in Section 6.4 of

the empirical investigation.

An alternative approach, area partitioning, is also discussed in Section 4.3, but not pursued in either the

theoretical or empirical investigations.

A number of variations are possible for Step 7. The �rst is to keep the best value from the previous

iteration, discussed in Section 4.3.1 and explored empirically in Section 6.5. A further variation, motivated by

observed empirical behavior of the algorithm, is to include values that neighboring variables rate promising

and is explored in Section 6.7.

The remaining sections of this chapter develop various possibilities for each step of the algorithm. Rather

than present each step in the order they appear in Figure 4.1, the detailed discussions are presented in an

order that is most convenient for exposition. This is roughly (but not exactly) the reverse order. For

example, a thorough understanding of how f is to be used greatly aids in understanding the motivations
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x

ff(x)

New Discretization of x

x

ff(x)

New Discretization of x

(a)
(b)

Figure 4.2: A subjective estimate for where the optimum value of x occurs is encoded as a pdf, shown

above as f(x). (a) A discretization of x chosen by picking m = 7 random values according to f(x). (b) A

discretization chosen by dividing the probability mass into m = 7 equal areas and selecting the median from

each region.

and algorithms behind the estimation of f , and this in turn provides the background for understanding the

growing process used to select the initial discretization.

4.3 Using an Estimate f

The most natural way to use f(x) is to randomly choose m independent values for x according to the

distribution f(x). Thus, values of x are picked according to the probability of them being optimal. A

discretization chosen in this fashion is shown in Figure 4.2(a).

A second seemingly reasonable way to use f(x) is to partition the area under f(x) into m equal areas and

include one representative point (the median) from each of those areas in the discretization. A discretization

chosen in this fashion is shown in Figure 4.2(b).

Both the random and area partitioning methods tend to concentrate points more densely where f is

large, obtaining better resolution where it estimated to be most promising. However, the random method

has several advantages over the area partitioning method. First, it is more widely applicable since the area

partitioning method requires the possible values of a variable to be totally ordered, while the random method

can be applied in general, for example to multi-variate or (unordered) categorical variables. Second, since

the techniques are being applied in an iterative context, randomness leads to a more thorough exploration

of all possibilities over repeated iterations, while area partitioning must rely on a change to f to explore

alternatives across iterations. This makes the asymptotic behavior of the random method potentially easier

to understand. Also, there are degenerate cases where a multimodal shape of f can trick area partitioning

into selecting points where f is small (although these are not of much concern in practice). Third, when the

methods are applied to arbitrary shaped distributions, area partitioning requires the numeric evaluation of

a number of integrals (actually, of inverse integrals) in order to locate the desired points. This can be quite

costly computationally. The random method requires only that samples can be drawn from f e�ciently.

While inverse integrations can also be used to accomplish this, many other methods for drawing values from

arbitrary distributions exist (

[

Devroye, 1986

]

) and can be harnessed when they are more e�cient.

In most situations we expect two very close values of x to have very similar posterior probabilities;

therefore, it would be wasteful to pick two values very close together. This can happen with the random

sampling method as evidenced in Figure 4.2(a). This observation would appear to give area partitioning at

least one advantage over the random method. However, to the extent that this is a concern, the random

method can be modi�ed in a number of obvious ways to introduce a \spreading-out bias." For example, km

points can be chosen (k � 1), sorted, and then only every k

th

point kept (starting with the dk=2e

th

point).
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The end result has two points very close together only if k + 1 or more draws are very close together, an

event that becomes very unlikely with increasing k. As k is made larger, the spreading-out bias becomes

stronger, approaching the area partitioning method with probability 1 as k �! 1. It should be noted

that the use of such a bias distorts the e�ective distribution that the points are being drawn from as well

as making the draws dependent. Also, like the area partitioning method, this use of a spreading out bias

requires an ordered domain, and therefore is slightly less general than pure random sampling.

In the results reported in this thesis, I have used only the random method. During the course of

development, I did utilize the area partitioning method quite extensively, but in the end, particularly over

multiple iterations, I had better results with the random method. I then turned to techniques and particular

choices of distributions that could not feasibly be used with the area partitioning method (because of the

complexities of computing an integration on these distributions), but for which I was able to utilize the

random methods. As a result, pragmatically the two became incomparable. During development, I have

also experimented with various spreading-out biases with the random method and actually (counter to my

intuition) found them to hurt performance. Roughly speaking, these biases tend to 
atten peaks and fatten

valleys and tails in the e�ective sampling distribution. The decrease in performance is an indicator that

the waste due to points being chosen too close together is negligible compared to the distortions to the

distributions introduced by spreading out biases. For larger m, these biases have virtually no e�ect. Since

they only complicate the algorithms and no bene�t has yet become apparent, I also limit attention in what

follows only to the pure random method.

In a full probabilistic model, there are typically many real-valued variables that must be discretized. In

the time-series segmentation application, all the transition times, t

1

; :::; t

k

, must be discretized. I examine

two basic approaches. The �rst treats one variable at a time. f is estimated for a single variable, perhaps

utilizing all information available in the full network, and the single variable is discretized. The estimate f

is re-estimated (for the next variable to be rediscretized) at each step based on the new discretization of the

previous variable. The second approach is to re-discretize all variables in the network on the same step. In

general, we can imagine f to be a subjective distribution over the joint space of all the continuous variables,

specifying the belief that the joint assignment is the optimum con�guration. However, for practicality, the

variables are treated independently. In other words, a separate f(t

i

) is estimated independently for each

variable, so that each continuous variable can be discretized individually. This is akin to assuming that the

joint f is the product of the individual f

i

's, i.e., f(t

1

; :::; f

k

) =

Q

i

f(t

i

).

The subjective probability estimate provides a general framework for exploring iterative discretization

methods. A method is characterized by the way it derives f(x). Di�erent bases for obtaining f(x) result

in di�erent discretization algorithms. These are compared in this chapter by using the random sampling

method for selecting a discretization from f(x). Clearly there are many possible approaches to discretizing

a continuous variable that do not require an explicit representation of f(x). However, a great many of these

approaches are equivalent to algorithms that chose their discretization from an f estimate, and can thus be

characterized by the e�ective f used in the equivalent algorithm. In this way, the framework based on f(x)

provides a common fabric that is useful conceptually and for comparing possible algorithms.

4.3.1 Keeping the Previous Best Con�guration

Once potentials have been propagated for a given discretization, the optimal segmentation (con�guration)

relative to that discretization can easily be read o�. Since the discretization process is iterative, it is

worthwhile to include the best point from the previous iteration in a new discretization. When this is done,

then the current best segmentation can only improve (or stay the same) with increasing iterations. This

introduces one more variant for Step 7 of the algorithm.

There is another good reason for preserving the best point when reframing. In some cases, a subtle

numerical instability can arise. For example, if all variables are (re)discretized simultaneously, it is possible

(although somewhat rare) for the latest point chosen for transition i by the (re)discretization algorithm to

occur before the earliest point for transition i� 1. This is due to the random variation inherent in random

sampling when the distributions for t

i�1

and t

i

overlap. The probability of a segmentation with t

i

< t

i�1

is zero, so when this occurs, a singularity is encountered: all (discrete) segmentations evaluate to zero.

Although a number of sophisticated algorithms are possible for preventing this singularity from occuring,
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the method of keeping the best segmentation found so far is very easy to implement and provides a very

robust solution to singularities of this nature. In all experiments later in this chapter where such a singularity

is possible, the point from the best con�guration is always kept.

4.3.2 Initializing Discrete Potentials

Once all the continuous variables in the model have been discretized, a discrete probabilistic model is

constructed by �lling in probabilities in the discrete model based on the probability densities in the continuous

model. In actuality, it is most convenient to do this at the junction tree level. The potentials at each node of

the junction tree are now simply nonparametric arrays with only a �nite number of entries. These potentials

are initialized according to (3.3, page 54), storing only the elements corresponding to the discretization.

This initialization preserves the relative evaluations between the possible discrete segmentations. In fact,

any initialization that preserves relative evaluations can di�er from this initialization by only a constant

factor.

Because it is important to maintain the relative evaluations (or at least the ordering of evaluations),

this initialization appears to be the only reasonable choice for the optimization problem at hand. However,

it does not compensate in any way for the spacing between discrete points. The initialization treats the

discretization as if it is evidence that the true segmentation is known to be one of the segmentations allowed

by the discretization (thus, we can talk of the optimal segmentation given the discretization). An alternative

might be to initialize the potentials by regarding each point as representing a region of values, so that

potentials on points in close proximity to other points are reduced (since they correspond to a smaller

area), while potentials on isolated points are increased. Such an approach might be more appropriate for

the task of estimating true posterior probabilities, but it also introduces a myriad of unsolved problems:

Markov assumptions are violated and additional measures over the space of possible values are required but

not available in any obvious way. Since there are other conceivable (albeit undeveloped) alternatives such

as these for initialization, the point-based initialization used here is clearly one of the most distinguishing

aspects of my approach.

4.3.3 Sampling from f

Once a subjective estimate f is obtained, the basic operation of the randommethod for selecting a discretiza-

tion is that of drawing a sample randomly and independently according to f . Depending on the nature of f ,

this is not always an easy operation. However, for the techniques of this chapter to be applied, it is critical

for this operation to be performed e�ciently.

There are several approaches to drawing a sample (random variate) from an arbitrary distribution. The

840 page book by Devroye (

[

Devroye, 1986

]

) is the leading reference on the topic, and demonstrates the

richness of this topic area in and of itself. All the material in this subsection is covered in that text.

Section 4.4.2 considers the problem of drawing samples e�ciently from the particularly complicated f that

arises in the time-series segmentation problem.

When applying the techniques in this chapter to other domains, the problem of e�ciently drawing a

sample from f must be addressed. Here I will very brie
y review some of the most basic tools for this that

one should be aware of. This review is by no means comprehensive. A combination of all these methods for

the implementation of the algorithm in this thesis (see the subsection \Sampling from f

mbp

" in Section 4.4.2).

Inversion Method

The inversion method is based on the simple observation that if F (x) is the cdf of f(x), and x is univariate,

then x = F

�1

(u) is a sample drawn from f when u is drawn uniformly from [0; 1]. This method works for

any f , but requires an e�cient evaluation of the inverse cdf. Note that if the cdf can be computed e�ciently,

a binary search can be used to compute F

�1

, with the number of iterations being logarithmic in the desired

resolution. For complicated f , the cdf usually requires numerical integration methods, and is often costly to

evaluate.
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Rejection Sampling

A second approach is rejection sampling. This approach is applicable when a distribution g(x) is available

that approximates f(x) and from which independent samples can be e�ciently drawn. A value c > 0 is

assumed, and the following procedure is used to generate a sample x � f :

loop

x � g

u � U U = uniform dist. on [0; 1].

until cug(x) � f(x)

return x

The sample x returned is distributed according to �minff(x); cg(x)g, where � is a normalization factor.

If c is chosen so that f(x) � cg(x) for all x, then the sample generated is distributed according to f . The

existence of a c such that f � cg basically requires g to have heavier tails and sharper in�nite peaks than f .

The smaller c is, the more e�cient the procedure is (i.e., fewer samples are rejected), so it is very important

for g to be a good approximation to f . It is often useful to tradeo� the �delity of the approach by lowering

c to where f � cg does not hold everywhere in order to obtain computational e�ciency. This is especially

reasonable when g would serve as a reasonable approximation to f in the application considered. In general,

this tradeo� must be evaluated on a case by case basis. Since our f is already a subjective estimate, some

distortion in the interest of e�ciency is often acceptable.

Product Form Rejection Sampling

One variation of rejection sampling is useful when f is in a product form. Suppose f(x) = cg(x)h(x), where

g is a pdf, h is a nonnegative function such as a pdf, and c is a (typically unknown) normalization constant.

Let

^

h be a value such that

^

h � h(x) for all x. Then the following procedure generates x � f :

loop

x � g

u � U

until u

^

h � h(x)

return x

The e�ciency of this procedure depends crucially on the shape of h(x) relative to g, and on how close

^

h

is to sup

x

h(x). For example, if 99:9% of the area under h(x) occurs in a region where g(x) is nearly zero,

then less than one point per thousand will be accepted. It can become extremely ine�cient when the modes

of g and h are very disparate, or when h is very spiky (i.e., nearly zero everywhere except for a few narrow

spikes). However, when used with care, this technique can be very useful.

Mixture Sampling

Another technique for generating random variates, which is of great importance for the methods in this

chapter, can be applied when f is expressed as a mixture of densities and random variates can be e�ciently

generated from each component density. Let

f(x) =

X

i

c

i

g

i

(x)

X

i

c

i

= 1

Pick a value i with probability c

i

, then sample x � g

i

. It follows that x � f . Therefore, it is possible

to sample from mixture distributions very e�ciently. For comparison, the inversion method is incredibly

ine�cient in this case.

4.4 Estimating f

This section considers the problem of estimating f .
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Given a full continuous probabilistic model, any given value for x either is or is not the value occuring in

the optimumMAP con�guration. Therefore, the knowledge available entails that the probability of x being

the optimum is everywhere either zero or one. This is to emphasize that f(x), the probability (density)

that x is the value in the optimum MAP con�guration, must be a subjective estimate formed with limited

resources based only on the computation that has been completed thus far. It is not a probability distribution

entailed by the available knowledge. By the nature of it being subjective, there is no single correct way to

construct f(x) from the partial computations completed to this point. The section examines a number of

possible schemes for constructing f(x). Once constructed, x can be discretized based on f(x) as already

discussed in Section 4.2.

It is important to note that f(x) is a continuous distribution de�ned for all real-values of x. Intermediate

computations are performed by discretizing all continuous variables and computing probabilities as if the

discrete values are the only possible values. Therefore, the information available for constructing f(x) is

largely discrete, but this must be used to construct a continuous f(x). This is accomplished in various ways

by the various methods discussed below.

Throughout this section, continuous variables appear without hats, and their discretized counterparts

appear with hats. For example,
^
x is the discretized version of the continuous variable x, and 


^

x

is the �nite

set of possible values for
^
x.

Section 4.4.1 begins with a relatively simplemethod for estimating f based on a variable's parents' discrete

posteriors (the estimate is denoted f

pp

). It is included for two reasons. First, it is perhaps the simplest

and most straightforward approach that is possible. This provides a point of comparison for motivating

more sophisticated methods for obtaining f . Second, it provides the reader with a simple starting point for

understanding how an estimate for f might be obtained.

Since it would seem to be the simplest approach, one might consider how the algorithm would perform

if the values were either selected from a uniform distribution or if they were spaced uniformly (i.e., at equal

distances, which is equivalent to using the area partitioning method on a uniform distribution). N�aively the

uniform distribution would seem to be simplest and most obvious choice for f ; however, this choice creates

more problems than it solves. The t

i

's (the random variables) are unbounded variables. It is not possible

to specify a (proper) uniform distribution on the real-line, so using a uniform distribution requires bounds

on the possible values for t

i

. Doing so places an upper bound on the greatest waiting time, yet no such

upper bound exists in the HSSMM in general. For example, the tail of a gamma distribution has positive

probability all the way to in�nity. Di�erent HSSMMs may run at di�erent time scales, so any method of

choosing the boundaries for a uniform distribution would have to examine the waiting-time distribution in

the HSSMM. Once this step is taken, it is much simpler to use the waiting-time distribution directly, rather

than develop some arti�cial procedure for extracting a reasonable upper bound from the distributions. Since

this is what the parents' posteriors method does, it is far more reasonable to consider the parents' posterior

method to be the simplest and most straightforward technique.

Section 4.4.2 introduces a better technique that utilizes the posteriors from all the neighbors of a variable

(the variable's Markov boundary). The estimate produced from this technique is denoted f

mbp

. It is based

on the simple idea that we can equate f to be the variable's (estimated) posterior probability. This is not

how f is de�ned, but it is perhaps the most natural heuristic to try. Quite a few sophisticated techniques

are developed in Section 4.4.2 to make f

mbp

usable, and together these form the bread and butter of the

approach. From there, a number of minor variations are also explored.

4.4.1 Using Parents' Posteriors

Suppose some discretization has previously been chosen for all variables in the model, and the marginal

posteriors computed using the nonparametric propagation algorithm of Chapter 3. The means by which

this iterative process is bootstrapped is considered later in Section 4.5. Based on the information available

from the posteriors of the parents of x, the variable x is to be (re)discretized. x has parents y

1

and y

2

,

connectively denoted as just y, as shown in Figure 4.3.

Denote the discrete values of y

1

and y

2

by 


^

y

= 


^

y

1

�


^

y

1

. The hat denotes the discretized version of

the continuous variable. Then 


^

y

is a set with a �nite number of elements, and as a result of propagation,

Pr(ŷjdata) = Pr(ŷ

1

; ŷ

2

jdata) is readily available, i.e., the joint marginal posterior probability over 


^

y

given
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Figure 4.3: The continuous variable x is to be discretized.

y x z

Figure 4.4: A three variable model. The in
uence of y on x is very di�use, while the in
uence of x on z

is quite strong. The parents' posterior method does not use given information about z as e�ectively as it

could.

the available time-series data and assuming the discrete values in the model are the only possible values for

the variables. In addition, the original probabilistic model contains p(xjy) | the continuous distribution

over 


x

conditioned on its parents. In the HSSMM, for example, p(t

i+1

jt

i

; s

i

) = c

s

i

(t

i+1

� t

i

). These items

of information can be combined as a mixture:

f

pp

(x) =

X

ŷ2


^

y

Pr(ŷjdata)p(xjŷ) (4.1)

This is a mixture of the possible distributions of x given its parents weighted by the posterior probability for

each discrete value its parent's can take on as determined by the parents' current discretization. f(x) obtained

by (4.1) is a continuous distribution over 


x

which can be used to obtain a new discretization (Section 4.2).

Random variates from f

pp

can be generated using the mixture method (Section 4.3.3, Page 83). First, ŷ is

drawn according to the computed potentials p(ŷjdata), then a random variate is drawn from p(xjŷ). Recall

from Chapter 2, Page 31, that the HSSMM requires that waiting-time distributions support e�cient random

variate generation, so f

pp

is a very e�cient method for discretizing a variable.

Drawbacks

The parents' posteriors method for obtaining f(x) su�ers from a number of problems. It does not make

full use of evidence observed for descendants of x, it can be adversely biased by the particular nonuniform

discretization of the parents, and it can over-commit to intermediate computations. The �rst two points are

discussed here while the last point is discussed in Section 4.5.

A very simple example illustrates the �rst drawback. A three variable model is depicted in Figure 4.4,

where x, y and z are all real-valued. x has one parent and one child. A continuous probabilistic model is

speci�ed by the following distributions:

p(y) = GammaDist[� = 10; � = 10](y)

p(xjy) = GammaDist[� =

y

1000

; � = 1000](x)

p(zjx) = GammaDist[� = x; � = 1](z)

Furthermore, in the current problem instance, z is observed to have a value z = 500. The thing to note

about the example is that the connection from y to x is very di�use | x given y has a variance of 1; 000 � y

with a mean of only y, while the connection from y to z is very strong, having a variance of x with a mean

x.
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Figure 4.5: The discrete posteriors over y (the parent of x). These posteriors are used by the parents'

posteriors method to discretize x. (a) 90 of the 91 discrete values for
^
y are located around ŷ = 100, while

only one is located near ŷ = 200. However, the ŷ = 200 value is 10 times more likely than any of the values

near ŷ � 100. (b) The discretization is spread more uniformly. (c) A discretization is concentrated around

ŷ � 200.

Without carrying out the full computation to �nd the MAP con�guration or the posterior distributions,

it is immediately clear that the likely values of x are very close to x = 500. A good estimate for f(x) should

be centered near x = 500 with a relatively small variance. However, because the parents' posteriors method

forms a mixture of p(xjŷ), and every p(xjŷ) has a huge variance, f

pp

(x) has a huge variance. In short, the

method does not utilize information obtained from x's descendants as e�ectively as it could.

It should be noted, however, that the parents' posteriors method does utilize information from x's de-

scendants | the information is not entirely overlooked. In the example, Pr(ŷjdata) = Pr(ŷjz = 500) is

the weighting given to the mixture. This weighting does account for available evidence arising from the

descendants of x, and has the e�ect of helping to center f(x) given the evidence. The primary drawback

here is that the variance in f(x) is excessively large when the connection to x from its parents is di�use.

This drawback is addressed by the method of Section 4.4.2.

A second problem of the parents' posteriors method is that the density of the discretization for the

parents in
uences f(x) in an undesirable fashion. Figure 4.5(a) shows a discrete distribution for
^
y. y has

been discretized to 91 discrete values, 90 of which are placed in close proximity around y = 100, and one

of which is at a signi�cantly larger value, y = 200, but which has a posterior probability 10 times greater

than any of the other discrete values for ŷ. Despite this, 90% of the total probability mass is located near

y = 100, so despite the fact that y = 200 appears very likely, it has a relatively minor contribution to f(x).

If, on the other hand, the discretization for
^
y is spread uniformly, as in Figure 4.5(b), the region around

y = 200 predominantly determines f(x). In short, it is not just the posterior distribution for y that weights

the mixture for f(x), the current discretization for y indirectly in
uences the mixture as well.

The iterative aspect of discretization has the potential to signi�cantly alleviate this second drawback.

If an e�ective re-discretization technique is performed on y, the discretization in �gure 4.5(a) should be

changed to something closer to Figure 4.5(b), or even something more like Figure 4.5(c). Then, when f(x)

is estimated using the parents' posteriors method, the more likely values of y will indeed have the greatest

contribution. Note, however, that the parents' posteriors method for reframing y will often not be e�ective

for rediscretizing y in this fashion. The emphasis on more likely values can also be overdone in the other

direction | i.e., the more likely values contributing more than they would using a uniform discretization.
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This problem is less severe when we are searching for the MAP con�guration.

Fundamentally, the parents' posteriors method aims at approximating

f(x) =

Z

p(yjdata)p(xjy)dy (4.2)

using only the discrete information available for the parents y. One option for addressing the second

drawback would be to employ some method for estimating the continuous parents' posterior, p(yjdata). For

example, perhaps the above parents' posterior method, applied to the parents, would be one method for

doing this. Any of the other methods discussed in this chapter might also be applied. Then f(x) can be

based directly on (4.2). The integral in (4.2), would have to be evaluated or approximated numerically

whenever f(x) or F (x) is desired.

If the estimate for p(yjdata) is a good one, then using the continuous integral eliminates the bias created

by nonuniform discretizations. However, if the parents' posterior is estimated using the discrete parents'

posterior method, then the bias from nonuniform discretizations may exist in the estimate of p(yjdata), so

this would serve only to push the problem back one level. It would do so at the expense of considerable

computational overhead.

The recursion could be pushed all the way to the beginning of the propagation graph, but then the

numerical evaluation of the integral would be comparable to solving the entire undecomposed problem

directly. This would be a step in the wrong direction. If the estimate of p(yjdata) is based on the technique

in Section 4.4.2, for example, it would not even be possible to push the recursion back to a point of termination

in this fashion.

A second approach for dealing with this second drawback is to weight the components of the mixture

uniformly (see Section 4.4.3) and to assume that the spacing of the discretization for y already re
ects the

probability density of y. This might be justi�ed by the fact that the spacing of points were chosen on the

previous iteration to re
ect the density of f during that iteration. Assuming if the estimate f does not

change signi�cantly between iterations, this would also be a reasonable estimate of density for the current

iteration, and thus, the spacing alone might be taken as an encoding of weighting. Experiments in Section 6.9

indicate that the uniform weighting deals with this phenomena in a fashion that does indeed translate to

superior performance.

4.4.2 Using Markov Boundary's Posteriors

As discussed above, one drawback of the parents' posteriors method is that observed information for de-

scendants of x does not in
uence the discretization of x as strongly as it should in some cases. The Markov

boundary's posteriors method address this by directly using the posteriors from all neighbors | parents

and children, or more generally the posteriors for all variables in x's Markov boundary, to form f(x). The

Markov boundary of x is the smallest set of variables in the dependency graph that renders x conditionally

independent of all other variables in the graph. In an undirected graph, the Markov boundary consists of a

variable's immediate neighbors. In a directed graph, the Markov boundary consists of x's parents, children

and spouses, where a spouse is a variable that shares a common child (

[

Pearl, 1988, page 97

]

). Equivalently

stated, the Markov boundary of a variable in a directed graph is the set of variables adjacent to the variable

in the (undirected) moralized graph.

Figure 4.6 shows a portion of the dependency graph for the time-series segmentation problem (c.f. Fig-

ure 3.1). Variables t

i�1

, s

i�1

, s

i

, and t

i+1

are adjacent to t

i

, thus forming the Markov boundary for t

i

, and

therefore the posteriors for these variables are to be used in forming f(t

i

). The Markov boundary method

forms the mixture:

f

mbp

(t

i

) =

X

^

t

i�1

;

^

t

i

s

i�1

; s

i

Pr(

^

t

i�1

; s

i�1

; s

i

;

^

t

i+1

jdata)p(t

i

j

^

t

i�1

; s

i�1

; s

i

;

^

t

i+1

; data) (4.3)

The summation ranges over all discrete values of

^

t

i�1

and

^

t

i

according to the current discretization, and

over all values of s

i�1

and s

i

(which are already discrete in the HSSMM). The weights for the mixture are
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Figure 4.6: A portion of the dependency graph for the time-series segmentation problem. The Markov

boundary of t

i

consists of the variables immediately adjacent to t

i

, in this case t

i�1

, s

i�1

, s

i

, and t

i+1

.

given by

Pr(

^

t

i�1

; s

i�1

; s

i

;

^

t

i+1

jdata) =

X

^

t

i

Pr(

^

t

i�1

; s

i�1

;

^

t

i

jdata)Pr(s

i�1

;

^

t

i

; s

i

jdata)Pr(

^

t

i

; s

i

;
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t
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jdata)

Pr(s

i�1

;
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t

i

jdata)Pr(
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t

i

; s

i

jdata)

(4.4)

The probabilities appearing in the right hand side of (4.4) are all available as clique and separator potentials

in the junction tree (see Figure 3.6 on page 51).

For the HSSMM, the mixture components are obtained as

p(t

i

j

^

t

i�1

; s

i�1

; s

i

;

^

t

i+1

; data) =

c

s
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i

�

^

t
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)c

s

i

(

^
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� t

i

)d

s

i�1

(data;

^

t

i�1

; t

i

)d

s

i

(data; t

i

;

^

t

i+1

)

R

c

s

i�1

(t

i

�

^

t

i�1

)c

s

i

(

^

t

i+1

� t

i

)d

s

i�1

(data;

^

t

i�1

; t

i

)d

s

i

(data; t

i

;

^

t

i+1

)dt

i

(4.5)

Sampling from f

mbp

To use f

mbp

, it is necessary to draw random variates from f

mbp

e�ciently. Doing so is no obvious matter, but

by combining all of the techniques for random variate generation discussed in Section 4.3.3, we can obtain

an e�cient algorithm for doing so.

The �rst step is to make use of the mixture form in (4.3). This requires drawing (

^

t

i�1

; s

i�1

; s

i

;

^

t

i+1

)

jointly from the distribution p(

^

t

i�1

; s

i�1

; s

i

;

^

t

i+1

jdata) given by (4.4). The junction-tree potentials make this

a relatively easy task, since these potentials already re
ect the in
uence of available data. The procedure,

using the normalized sum potentials (Section 3.1.3) is:

1. Propagate sum potentials (Figure 3.10, on Page 57).

2. (

^

t

i�1

; s

i�1

;

^

t

i

) �  (

^

t
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; s
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)

3. s
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)

#(s

i�1

;

^

t

i

)
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^

t

i+1

) p(
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 (

^

t
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i

;

^

t

i+1

)

#(

^

t

i

;s

i

)

5. Return (

^

t

i�1

; s

i�1

; s

i

;

^

t

i+1

)

Then (

^

t

i�1

; s

i�1

; s

i

;

^

t

i+1

) � p(

^

t

i�1

; s

i�1

; s

i

;

^

t

i+1

jdata) as desired. Having chosen (

^

t

i�1

; s

i�1

; s

i

;

^

t

i+1

), t

i

is

drawn from p(t

i

j

^

t

i�1

; s

i�1

; s

i

;

^

t

i+1

; data) as given in (4.5). Next things get tricky.

One approach for drawing a sample from (4.5) is to use the product form of rejection sampling (see

Section 4.3.3, Page 83). To do so, we simply draw t

i

from c

s

i�1

(t

i

�

^

t

i�1

), the waiting-time distribution,

and use h(t

i

) = c

s

i

(

^

t

i+1

� t

i

)d

s
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(data;

^
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i�1

; t

i

)d

s

i

(data; t

i

;

^

t

i+1

) in the rejection criteria. It is also nec-

essary to �nd some method for obtaining

^

h, the upper bound on sup

t

i

h(t

i

). Assuming

^

h is obtained,

the product form rejection sampling algorithm returns a random variate t

i

from the desired distribution

p(t

i

j

^

t

i�1

; s

i�1

; s

i

;

^

t

i+1

; data). Thus, t

i

� f

mbp

.
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Unfortunately, the above use of product form rejection sampling is horribly ine�cient in many important

cases. For example, if

^

t

i�1

and

^

t

i+1

are far apart relative to �(c

s

i�1

) and �(c

s

i

), then almost any value that

is likely to be generated by c

s

i�1

will be rejected by c

s

i

with high probability. In the extremely unlikely

event that a point is accepted by c

s

i

, it must still be accepted by d

s

i�1

and d

s

i

, so further rejections are

likely, and if

^

h is overestimated then even more unnecessary rejections occur, so that in total, a great many

samples may be generated before one is actually accepted. As a result, the direct version of product form

rejection sampling is not feasible for this problem.

An approach that does work well in this case is an adaptive version of the product form rejection

sampling, except that instead of using c

s

i�1

as the generator, we use the product distribution g(t

i

) /

c

s

i�1

(t

i

�

^

t

i�1

)c

s

i

(

^

t

i+1

� t

i

) as the generator. The rejection function utilizes the shape recognizers, i.e.,

h(t

i

) = d

s

i�1

(data;

^

t

i�1

; t

i

)d

s

i

(data; t

i

;

^

t

i�1

). Although g(t

i

) is in a product form, it would be unwise to

use rejection sampling to draw from g since, as discussed above, product form rejection sampling becomes

highly ine�cient when c

s

i�1

and c

s

i

become highly separated as can occur in the time-series segmentation

application. Therefore, to draw from g other methods are utilized, discussed below.

The problem remains of determining

^

h. It is important not to be overly conservative with this estimate,

otherwise e�ciency is quickly sacri�ced. On the other hand, if

^

h is underestimated, the distribution from

which t

i

is drawn is distorted. However, in the present case, the distortion is not too evil, for as

^

h is underes-

timated to a greater and greater extent, the distorted distribution approaches g(t

i

) = p(t

i

j

^

t

i�1

; s

i�1

; s

i

;

^

t

i+1

).

In other words, it simply pays less attention to the data between

^

t

i�1

and

^

t

i+1

. Even in the most extreme

case (

^

h = 0), this is a pretty good approximation for our purposes, especially when one recalls that f

mbp

is

already a subjective, heuristic estimate. If

^

h is only barely underestimated, then such an approximation is

more than satisfactory.

From these considerations, I have used an adaptive procedure for estimating

^

h. The approach inherently

underestimates

^

h (hence some distortion is always present), but hopefully not by much in the typical case.

When a really tough case is encountered, i.e., when the data between

^

t

i�1

and

^

t

i+1

is in severe disagreement

with transition probability expectations, the adaptive algorithm decays

^

h until a sample is accepted. In

this way, the algorithm ensures that a sample is drawn in a timely fashion by loosening the guarantee on

what distribution it is drawn from. However, when possible, the sample will be drawn from something very

close to f

mbp

, and distortions to the distribution occur only to the extent that they are needed to ensure

timeliness.

The adaptive algorithm is quite simple. To obtain an initial estimate of

^

h, a handful

1

of samples fxg are

drawn from g. The initial

^

h is set to max

x

h(x), where the max is taken over these initial samples. Then, a

sample is generated as:

loop

x � g

u � U

^

h = 
max

�

^

h; h(x)

�

;
 = decay factor � 0:99.

until

�

u

^

h � 
h(x)

�

The only operation that has not yet been described is the drawing of x � g. To do this, g is approximated

by a piece-wise linear pdf, ~g, and the inversion method for random variate generation applied to ~g. Because

~g is piece-wise linear, the inversion method is highly e�cient.

The algorithm that I have used for constructing ~g is shown in Figure 4.7. Once the segment boundaries

are determined, the approximation is simply what one would expect. Speci�cally, the value of ~g(x) at the

point where two linear segments meet is set to be proportional to g(x). The constraint that ~g must be a

pdf, and therefore have an area of 1, determines the constant of proportionality. The more notable aspect

of the algorithm in Figure 4.7 is that the segment boundaries are not evenly spaced. Instead, the algorithm

attempts to place more segments in areas where it is likely to be more critical for the approximation, where

the heuristic method for determining this is spelled out in detail in Figure 4.7 with the selection of x

j

. Other

1

My implementation uses 10 initial samples.
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Notation: Let g
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Figure 4.7: Approximating g with a piece-wise linear pdf, ~g.
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methods for selecting segment boundaries are obviously possible, but I have had no need to go beyond the

simple scheme shown in the �gure.

4.4.3 Alternative Weighing Regimes

The mixture in (4.3) that de�nes f

mbp

consists of a set of components (which are continuous distributions)

weighted by Pr(

^

t

i�1

; s

i�1

; s

i

;

^

t

i+1

jdata). This weighting factor is the posterior marginal probability, also

corresponding to the \sum potential" computed by propagation (see Section 3.1.3). This is not the only

weighting scheme possible.

The reader should note that the de�nition of f

mbp

given by (4.3) is heuristic. If the summation in (4.3)

is replaced by an integration, an exact expression for p(t

i

jdata; discretization) results, making it easy to

overlook that turning the integration into a summation is only a heuristic move. It does not make that

formula any more valid than another mixture with some other weighting scheme. Furthermore, the use of

the discrete posterior as an estimate of f was also heuristic | f is not an estimate of the posterior, but

instead an estimate that the value belongs to the optimum con�guration. Using an approximation of the

posterior for f is only a heuristic.

There are two other natural weighting schemes to consider. In each, we simply replace

Pr(

^

t

i�1

; s

i�1

; s

i

;

^

t

i+1

jdata) with something else.

Since the weighting coe�cients in (4.3) are the sum-potentials of propagation (i.e., those computed in

3.1.3), a natural alternative is to use the max-potentials (i.e., those computed in Section 3.2.4). Consider that

the inference task studied here is that of �nding the MAP con�guration. It is not one of computing marginal

distributions. Since the max-potentials directly re
ects the goodness of a value relative to the optimum

setting for all other variables, this more directly re
ects the likelihood that a con�guration is optimal than

sum-potentials do. There is an added advantage as well: the step of propagating sum-potentials can be

eliminated entirely. Max potentials must already be propagated to �nd the optimum con�guration relative

to the discretization, so these are already available.

Recall that all terms appearing on the right hand side of (4.4) are sum-potentials. The exact same

quantities are also available for the max-potentials. The most straightforward implementation of max-

potential weighting simply substitutes (normalized) max-potentials in (4.4) in place of the corresponding

sum-potentials.

A second natural alternative weighting scheme to consider is to weight all components of (4.3) equally,

i.e.,

f

mbp

(t

i

) =

X

^

t

i�1

;

^

t

i

s

i�1

; s

i

1

�

p(t

i

j

^

t

i�1

; s

i�1

; s

i

;

^

t

i+1

; data)

where � is the number of possible joint assignments to the Markov boundary. The motivation for this scheme

is discussed in Drawbacks in Section 4.4.1 and illustrated by Figure 4.5. The idea here is that the spacing

of discrete values already re
ects the quality of a con�guration. Possible values for neighboring values are

concentrated more densely around more promising regions, so this density in e�ect already provides an

appropriate weighting for the mixture. A similar uniform weighting is utilized in the algorithm of

[

Tanner

and Wong, 1987

]

, for example. The uniform weighting entirely eliminates the need to use the results of

propagation to obtain f . However, the propagation of max-potentials must still be carried out since at each

iteration the optimum relative to the current discretization must be identi�ed.

4.5 The Initial Discretization: Growing the Model

The previous section outlines a process of iteratively re�ning discretizations based on previous choices of

discretization. However, the problem remains of picking an initial discretization to bootstrap the whole

process. The bootstrapping requires some special treatment.

As before, the initial discretization is chosen based on a subjective estimate, f(x), using one of the

techniques in Section 4.2. However, it is not possible to use f

mbp

(x) since this estimate is based on a

previously chosen discretization. The estimate of f

pp

(x) is also based on a previously chosen discretization,
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but only on a discretization of the parents of x. Thus, the variables in a directed acyclic graph can be

discretized initially by growing the graph incrementally from parents to children. The same idea can be

applied to an undirected graph simply by applying an arti�cial ordering to the variables. At each step,

discrete posteriors are computed for the leaves, then f

pp

(x) is obtained for each variable x not yet appearing in

the graph, but whose parents already appear. x can then be added using f

pp

(x) as the basis for discretization.

For the �rst nodes with no parents, f

pp

(x) reduces to using the priors directly, i.e., f

pp

(x) = p(x).

In the case of the HSSMM, the growing process amounts to adding (t

i

; s

i

) at each iteration of the

growing procedure. In time-series segmentation, there is no limit to the number of stages that can be added,

so the growing procedure does not naturally terminate. However, if the last datum in the actual time-series

data observed so far occurs at time T , there is a point where the probability of t

N

being less than T is

miniscule. Growing the chain beyond N stages would, at that point, provide little additional information

about where transitions occur. Thus, pragmatically it is possible to terminate the growth even in the time-

series segmentation application. Note that the actual number of variables added to the computational graph

depends on the actual data. In a system that performs on-line segmentation, the chain may be grown

incrementally in this fashion as new data arrives.

4.6 Control Structures

When dynamic iterative discretization is applied, several choices exist at every step of the iteration. An

algorithm must decide whether to grow the graph or whether to rediscretize existing variables (or both). If

variables are to be rediscretized, it must choose which variable(s) to rediscretize on this iteration. For each

variable to be discretized, it must select the method for obtaining f(x) (e.g., from those in Section 4.4) and

the method for sampling from f(x) (e.g., from those in Section 4.2). These choices need not necessary be

the same for every variable in the graph. The portion of an iterative discretization algorithm that makes

these choices is referred to as the control structure. An on-line system may also need to make decisions

about handling incoming time-series data, for example, when to recompute, rediscretize, or grow based on

the data received.

The control structure can be quite simple. One example of an iterative discretization algorithm is the

following. At every step of the iteration, use the existing discrete posteriors to compute f

pp

(x) for every

existing node and every node that can be added at this iteration. Then always grow the chain and rediscretize

every variable according to f

pp

(x) using the area partitioning method. In this algorithm, the control structure

is quite simply described: Always grow, always rediscretize every variable, and always use f

pp

(x) with area

partitioning.

The richness of the space of possible dynamic iterative discretization algorithms in this framework is

demonstrated by the following example of a more sophisticated control structure. First, decide whether a

node remains to be added. In the time-series segmentation application, make this decision by comparing the

time of the last data point to the time of the last transition in the optimal segmentation given the current

discretized graph. If the optimal transition time occurs after the time of the �nal data point, do not grow

the graph further, otherwise add a new transition node. If a node is added, rediscretize only the �nal three

transition times, using a di�erent f(x) for each of them. For the added variable and for the leaves, use f

pp

(x)

with uniform weighting (Section 4.4.3). For the penultimate variables (parents of a leaf) and the parents of

penultimate variables, use f

mbp

. If no node is added, rediscretize every variable using f

mbp

.

A sophisticated control structure may be useful for addressing certain undesirable artifacts that arise

from discretization; however, the richness of this space make it very di�cult to study possible variations on

control structures in anything close to an exhaustive manner. It should simply be recognized that variations

on control structure is dimension distinguishing variations in possible algorithms.

4.7 Summary

Many forms of distributions on continuous variables cannot be propagated without a loss of information

from exact methods. In some cases, the update of a local potential after a propagation step may not belong

to the same parametric family as the original potential. Such a distribution on a graphical model may be
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referred to as non-conjugate. Such models typically require the use of approximate techniques. In other

cases, e�ciency concerns alone may also motivate the use of an approximation technique.

Discretization is one such approach for dealing with non-conjugate cases or for obtaining approximation

techniques to di�cult problem instances. An exact solution to a discrete model may provide an approximate

solution to the original model if the discretization is good. The challenge becomes one of picking a good

discretization.

A good discretization should have a small number of possible values, since the number of values determines

how hard it will be to solve the discrete model. When �nding maximum a posteriori (MAP) con�gurations,

as we are doing here, we would also ideally hope that the optimum con�guration for the original model

is included in the discretization, since if it is, the optimum answer for the discrete model will also be the

optimum for the original. In practice, this latter property is not particularly useful since it is not operational.

More pragmatically, it is important to allow for non-uniform discretizations, i.e., such that values are not

necessarily spaced at equal intervals, since we hope to concentrate resolution where it matters or is most

likely to help. Furthermore, discretizations should be dynamic, i.e., tailored to the problem instance (to

the data observed so far, etc). These concerns make selecting a discretization essentially a chicken-and-egg

problem, and therefore suggests the use of an iterative technique.

Iterative dynamic discretization, the technique described in this chapter, is based on the central idea

that by solving a discrete model, we can learn something about what values are promising, and then we can

use this knowledge to select a new and more informed discretization. The process can then be iterated.

The framework in this chapter has broken iterative dynamic discretization down into a few basic steps.

Starting with an initial discretization, the discrete model is solved using exact methods (from Chapter 3).

This information is utilized to form an estimate, f , in the form of a pdf for how promising the possible

(continuous) values of a selected variable is. A variable is chosen for rediscretization, and the estimate for

that variable guides the selection of new discrete values. Each of these steps can be instantiated in a number

of di�erent ways, and because of this, iterative dynamic discretization really refers to a class of algorithms.

This bulk of this chapter has examined the possible instantiations for each step of the algorithm.

The following two chapters explore the properties and performance of iterative dynamic discretization.

Chapter 5 examines some theoretical properties of the algorithm, while Chapter 6 explores the performance

of the technique empirically, examining a variety of instantiations in order to understand the sources of

power of the technique.



Chapter 5

Asymptotic Stability

Some results concerning the asymptotic behavior of iterative dynamic discretization are informative. For

example, consider the following questions:

1. Does the solution produced by the algorithm in the limit depend on the initial discretization?

2. Will the algorithm always �nd an optimum segmentation if run long enough?

3. Can the limiting discretization(s) produced by the algorithm be characterized in a meaningful way?

4. Is there a relationship between the asymptotic behavior of the algorithm and the base distribution, p,

over the space of possible con�gurations?

The �rst two of these questions are questions about the stability of the algorithm. They are answered

de�nitively by the theoretical results in this chapter. It is shown that the same limiting behavior is obtained

regardless of the starting discretization, and that the algorithm is Harris recurrent, implying that a seg-

mentation arbitrarily close to the optimum will eventually be located. The algorithm approaches an unique

ergodic distribution over the space of possible discretizations from any starting point.

The second two questions concern characterizations of the limiting behavior. Such characterizations

have not been found and remain an open question. It is shown that for a two-variable model, a clean

characterization is possible, but that this same characterization does not necessarily hold when there are

three or more variables. The prospect of designing a new iterative dynamic discretization algorithm in which

such a property holds is an intriguing possibility, but something that remains an open problem.

The main result is Theorem 7, which states that for any starting con�guration, the iterative dynamic

discretization algorithm approaches an unique limiting behavior in which it repeatedly visits all

1

possible

discretizations, and that it visits these according to a unique limiting probability distribution, �. The main

theorem states that it approaches this limiting distribution from any possible starting con�guration.

The next section describes the assumptions behind the theoretical results, while the Section 5.2 contains

the derivation of the Theorem, along with a gentle description of the rather advanced theory of Markov

chains required for the result. Finally, Section 5.3 contains some discussion about the (open) problem of

relating the asymptotic distribution to p. The treatment of iterative dynamic discretization in this chapter

suggests another perspective: that iterative dynamic discretization is one way to combine Gibbs sampling

with exact propagation methods, potentially harnessing the complementary strengths of each. Section 5.4

discusses this perspective.

1

The mathematical notation in this section makes this more precise. Because the space of discretizations is continuous

(uncountable), it is obviously not possible to visit all possible discretizations. The mathematically correct description is that it

repeatedly visits all measurable sets of discretizations.

94
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5.1 The Assumptions

Theoretical results require a certain precision regarding the assumptions used, variants of the algorithm

allowed, etc. The more casual reader may be su�ciently satis�ed with the informal description of the results

given above, and may prefer to skip to Section 5.4 at this time. The slightly more sophisticated reader may

wish to read this and the following subsection to understand the formal assumptions that the results depend

on. The sections containing the proofs can easily be skipped over without loss of continuity.

First, I assume that each variable is discretized to m possible values. The fact that the number of values

is the same for all variables is only used to simply notation, and of course, is not critical.

Second, I assume that one variable at a time is discretized at each step, and that either the variable to

discretize is chosen at random or a repeating pattern of visits to all the variable is used. If variables are

chosen at random, then every variable must have a positive probability of being chosen at any iteration. If

they are chosen according to a repeating pattern, then every variable must occur in that pattern at least

once. These are the same visitation assumptions usually assumed for Gibbs sampling

2

.

When a given variable, x

i

, is discretized, I assume the random method is used to generate the m possible

values. Speci�cally, a distribution f(x

i

) is obtained, and m values are chosen independently from f(x

i

).

These become the m values of the discretization. For formal rigor, it is necessary to worry about the

situation when two or more of the m values drawn are equal. If we have a bounded probability density on

a continuous space (as with the time-series segmentation domain), duplicate draws occur with probability

zero, so this case is of little concern. But to ensure that the results hold for �nite or countable domains,

and for in�nite domains with impulses in the density function (provided they obey the other requirements

below), it is of interest to treat this case carefully. One obvious way to handle this is to draw the m values

from f without replacement, but the mathematics of this treatment are intractable. Instead, when two

duplicate values are drawn, we take the set of possible values to be something less than m, and the other

aspects of the iteration operate as they normally would if that were the number of actual values. Later in

Section 5.3, a distribution p̂ over the space of con�gurations is de�ned and involves randomly drawing a

con�guration from a discretization. With duplicate values possible, the algorithm is really visiting bags of

con�gurations, and p̂ is obtained by drawing x from one of these bags. In other words, a duplicate value

doubles the odds of that value being drawn in that �nal step. Under this treatment of duplicate values, the

results derived below hold. Again, for continuous spaces (with bounded densities) such as the one occuring

with time-series segmentation, duplicate values occur with probability zero, so the need to worry about this

does not arise.

Next, it is assumed that when x

i

is discretized, the f used to generate m values is a mixture of conditional

probabilities, where each component conditions on a possible value in the current discretization for all the

other variables in the model (i.e., x

j

; j 6= i). In other words:

f(x

i

) =

X

y2Y

w

y

p(x

i

jy) (5.1)

where Y = X

1

� :::�X

i�1

�X

i+1

� :::�X

n

is the set of values in the current discretization for all variables

other than x

i

, and w

y

is some weighting scheme placed on those values. Note that in a graphical probabilistic

model, conditioning on y 2 Y amounts to conditioning on the variables in the Markov boundary. The results

therefore cover variants of the f

mbp

scheme, including arbitrary weightings, and not just weighting by \sum

potentials". For example, the results hold for a uniform weighting or when the max potentials are used.

Examples of the weighting scheme include weighting all possible values in Y equally, using the sum potentials

as was done for the pure f

mbp

, or using the \max potentials." So many variations of the iterative dynamic

discretization algorithm are included under this assumption (and the results in this section hold for all of

them), but for example, the use of f

pp

is not covered by these results.

2

It would be nice to prove the results for any sequence of one-variable-at-a-time discretizations where each variable is visited

in�nitely often, as is done in

[

Geman and Geman, 1984

]

for the case of Gibbs sampling on a �nite sample space. However, this

is not attempted here.
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5.1.1 Positivity of p

A standard assumption in Gibbs sampling is that p (where p is the probability density of interest) is ev-

erywhere positive (see Section 3.4). This, coupled with the visitation schedule constraints, is enough to

guarantee a unique ergodic distribution matching p. The positivity is used to guarantee p-irreducibility.

For the asymptotic results here, we require the same, i.e., that p have an everywhere positive density.

However, positivity alone is not quite enough

3

. Here, a slightly stronger form of positivity of p is required.

De�nition 2 Denote the probability space as the cross product space (
;F). Suppose that for some ordering

of the variables, there is a rectangular set A = A

1

� :: � A

n

2 F with positive Lebesgue measure and there

exists an � > 0 such that

p(x

i

jx

1

::x

i�1

x

i+1

::x

n

) � � (5.2)

for all values x

j<i

2 A

j<i

and x

j>i

2 


j>i

. When this holds, we say that A is a rock for p, and if p is also

an everywhere positive density, we say p is rock-positive.

For intuition, one can think of A being a \rock-solid" positive set. If the density p is everywhere positive,

then so is the conditional density, but this alone does not guarantee that the conditional density could not be

made arbitrarily close to zero for some conditioning set. The existence of a \rock" (the set A) immediately

reachable from all states with some nonnegligible probability, provides a way to ensure that the algorithm

is recurrent.

It is possible for p to have a rock without being everywhere positive. Positivity is required for p-

irreducibility, but the results generalize to distributions that are not positive everywhere provided that

p-irreducibility can be ensured in some manner

4

. In the case of Gibbs sampling,

[

York, 1992

]

makes similar

observations.

5.2 Convergence Results

Lemma 3 Suppose p is rock-positive on n variables with rock A. Consider an iterative dynamic discretiza-

tion algorithm where one step consists of (1) selecting a variable x

i

to rediscretize at random from a �xed

positive distribution over the n variables, (2) picking m values independently for x

i

from a distribution f

having the form of (5.1). Then there exists a � > 0 such that after n steps, all possible discrete con�gurations

are contained in A with probability at least �.

Proof: Let 


i

= ��(A

i

) denote the probability of A

i

, where � is the standard Lebesgue measure over the

space of possible discretizations, and let 
 = min

i




i

. Since A

i

has positive Lebesgue measure, 
 > 0. Let

a(i) denote the probability that variable x

i

is chosen for rediscretization on any given step. With probability

a(1)a(2)::a(n), the variables are chosen in order and all n variables rediscretized during the next n steps.

When x

1

is rediscretized, with probability at least 


m

, all m samples drawn at random are all contained

within A

1

. (Actually, the probability is at least m!


m

, since the order in which they are drawn is irrelevant,

but by simply dropping the m! we have something even more conservative, and perhaps easier to follow.)

This is true for any w in (5.1). If this happens for x

i

, then when x

2

is rediscretized, there is also a probability

of at least 


m

that all points will be contained within A

2

. Therefore, with probability � = a(1)::a(n) (


m

)

n

,

all these events occur, and the resulting discrete points for all variables (and therefore all con�gurations) lie

within A. This is a lower bound on the probability of all con�gurations occuring in A, and since a(i) > 0

and 
 > 0, � > 0.

Lemma 4 Suppose p is rock-positive on n variables with rock A. Consider an iterative dynamic discretiza-

tion algorithm where variables are rediscretized one-at-a-time according to a �xed repeating pattern of length

` > n that includes at least one visit to each variable. When a variable x

i

is rediscretized, m values are

3

The degenerate cases for which positivity is not enough can occur only on in�nite state spaces. For �nite state spaces, the

rock-positivity is automatically implied by the positivity of the probability distribution.

4

p-irreducibility here refers to the p-irreducibility of Gibbs sampling.
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chosen independently from a distribution f having the form of (5.1). Then there exists a � > 0 such that

after `n steps, all possible discrete con�gurations are contained in A with probability at least �.

Proof: Let 
 be as in the proof for Lemma 3. Let z

i

denote the number of times variable x

i

occurs in

the visitation pattern. Consider the event that all values for x

1

are chosen to be within A on every visit to

x

1

during `n steps of the algorithm. Because A is a rock, this will occur with probability at least (


m

1

)

z

1

n

,

since x

1

is visited z

1

n times during this period. If this event occurs, then the event that all values for x

2

are

chosen from within A

2

on the second through `

th

repetition of the pattern occurs with at least probability

(


m

)

z

2

(n�1)

, since during each of these iterations, all values of x

1

are already guaranteed to be within A

1

.

Continuing for all variables, we have that all con�gurations lie within A at the end of `n iterations with

probability at least

� =

n

X

i=1

(


m

)

z

i

(n+1�i)

Note that every term of this sum is positive, so � > 0.

From this point on, I will refer to the iterative dynamic discretization algorithm as being either one of

the two schemes outlined in Lemmas 3 or 4.

Some notation is called for. In what follows, we will deal extensively with the space of possible dis-

cretizations. Each member of this space is a bag X = X

1

� ::: � X

n

, where each X

i

has m members,

X

i

� 


i

. In the proofs that follow, I will use s to denote a single discretization (i.e., s is a cross-product set

of joint con�gurations), S to denote a set of discretizations, � to denote the set of all possible discretiza-

tions, and B to denote a �-algebra on �. Furthermore, I assume that B is related to F (the �-algebra over

the space of possible con�gurations) in a rather obvious way. Recall that F = �(F

1

� :: � F

n

). Similarly,

B = �(B

1

� ::� B

n

), where B

i

� (F

i

)

m

, denotes (unordered) bags of size with elements from the space of

the �-algebra F

i

. In other words, B

i

consists exactly of all elements of (F

i

)

m

except that the members of

a set in (F)

m

are ordered, so that two sets in (F

i

)

m

that di�er only on the ordering of their members are

equated to the same set in B

i

.

An iterative dynamic discretization algorithm de�nes a Markov chain on the space of possible discretiza-

tions, (�;B). The next discretization is chosen stochastically based only on the current discretization, hence

it is order-1 Markov. I use the symbol � to denote this Markov chain. In what follows, I utilize the theory

of general space Markov chains extensively. The best reference on this topic is

[

Meyn and Tweedie, 1993

]

.

For the version described in Lemma 3, � is a time-homogeneous Markov chain, meaning that the transition

kernels are the same at every step; however, the version described in Lemma 3 is nonhomogeneous since the

transition kernel is determined by what step of the pattern the algorithm is on. However, the `-skeleton

of �, i.e., the Markov chain obtained by looking only at every `

th

step, is time-homogeneous. Denote the

`-skeleton of � by �

`

, and for notational continuity, simply take ` = 1 for the random visitation variant.

Denote the transition kernel of � by � (s; S), where s 2 � and S 2 B, and the transition kernel for �

`

by �

`

(s; S). Notice that in terms of this notation, Lemmas 3 and 4 simply state that there exists a nonnull

set A and a � > 0 such that � (s; A) � � from all s 2 �. The next proposition shows that these are in fact

transition kernels in the standard sense.

Proposition 3

1. For each S 2 B, � (�; S) is a nonnegative measurable function on �.

2. For each s 2 �, � (s; �) is a probability measure on B.

The same holds for �

`

.

Proof: For any s 2 � and S 2 B, � (s; S) is simply the probability of choosing a bag of m points in S

according to p(�jx) for some x 2 s (since f is a mixture with components p(�jx)). This is clearly nonnegative

and measurable for any x and since p(�jx) is measurable for any x, so is � (s; �). Finally, in general, when �

is a transition kernel, so is �

`

.
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Let � be a nontrivial measure on B. A set S 2 B is called a �-small set when for some n > 0 �

n

(s; B) �

�(B) for all s 2 S and B 2 B. S is called a small set when S is �-small for some nontrivial measure �

[

Meyn

and Tweedie, 1993, Page 106

]

. Small sets (and a generalization termed petite sets in

[

Meyn and Tweedie,

1993

]

, which are equivalent for our purposes) are utilized heavily in the theory of Markov chains on general

state spaces. They create certain pseudo-atomic properties that are of great power on generalized state

spaces. To gain an intuition about what a small set is, consider �rst the case where S contains a single

element (if such a set is in B). Obviously in this case S = fsg would be a small set since the transition

kernel leaving s would be a nontrivial measure by Proposition 3. However, if you take an arbitrary set S, it

could be the case that for any target B 2 B, there is a source s 2 S that cannot reach B in n steps. Then

�(B) would have to everywhere zero. In this situation, S would not be small.

Lemma 5 Suppose p is a rock-positive probability with rock A, and � is the Markov chain from the iterative

dynamic discretization algorithm using p. Then A is a small set.

Proof: Consider the nonnegative measure � on B de�ned by setting �(

�

A) = 0, where

�

A is the complement

of the rock A, and then setting �(S) =

R

S

�

m

d� = �

m

�(S) when S � A with � being the standard Lebesgue

measure over B. Suppose that s 2 A and a new state will be chosen by iterative dynamic discretization.

A variable x

i

is chosen for rediscretization, and because x

j 6=i

is currently within the subrock A

j 6=i

, the

probability density from which new points are drawn is everywhere greater than � within A

i

. Therefore, the

probability of m independently drawn points landing within a set S � A is at least �(S). Since this is true

for any starting point s 2 A, A is a �-small set.

Let L(s; S) denote the probability that a discretization in S is reached in a �nite number of steps from

s. For a measure � on B, a Markov chain is said to be �-irreducible when L(s; S) > 0 for any s whenever

�(S) > 0

[

Meyn and Tweedie, 1993, Page 87

]

. q

Lemma 6 For any measure � on B, � and �

`

are �-irreducible.

Proof: From the de�nition of �-irreducibility, it is obvious that whenever �

1

is absolutely continuous with

respect to �

2

and � is �

1

-irreducible, then � is �

2

-irreducible. Since any measure in general is a restriction

of some everywhere positive measure, it is only necessary to assume that � is an everywhere positive measure

on B. Since all everywhere positive measures are mutually absolutely continuous, they are all equivalent for

irreducibility.

Suppose � is currently at s. Consider a sequence of steps of the algorithm that visits (i.e., rediscretizes)

every variable at least once. Some such sequence will be of �nite length with probability 1 in the version

where the variable to rediscretize is chosen at random, and some such sequence will be of length ` in the

pattern-based version. Note that the end of such a sequence from � is also the end of such a sequence for

�

`

, so the argument that follows holds for �

`

as well. Because p is everywhere positive by assumption, the

conditional density p(x

i

jx

j 6=i

) is also everywhere positive. If we consider the last time x

i

is rediscretized

in the sequence, there is a positive probability of x

i

2 S

i

for any S

i

2 B

i

, since all m points are chosen

independently from the everywhere positive conditional density. So at the end of the sequence, the resulting

discretization has a positive probability of being in S for any S 2 B. Therefore, � is �-irreducible.

Some Markov chains are periodic, meaning that they are guaranteed to not be in certain states at certain

evenly spaced time points. Periodicity requires some degree of determinism in the transition kernel. The

exact de�nition of periodicity on an uncountable state space is needlessly complex for the present discussion,

but can be found in

[

Meyn and Tweedie, 1993, Pages 116-8

]

. A chain that is not periodic is called aperiodic.

When there exists a �-small set, A, with �(A) > 0, then the Markov chain is said to be strongly aperiodic

[

Meyn and Tweedie, 1993, Page 118

]

. As expected, strong aperiodicity implies aperiodicity.

Proposition 4 � and �

`

are strongly aperiodic.

Proof: In the proof of Lemma 5, a measure � is de�ned that assigns �(A) = �

m

�(A) > 0 to the rock A,

which by that lemma is a �-small set. Thus, � is strongly aperiodic, and the same holds for �

`

.
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For the following lemma, recall from above that L(s; A) is de�ned to be the probability that a discretiza-

tion in A is reached in a �nite number of steps from s. Following the notation in

[

Meyn and Tweedie, 1993

]

, I

will also write E

s

[�

A

] to denote the expected number of steps under � to reach A from s, and sup

s2A

E

s

[�

A

]

to denote the smallest upper bound on the expected time to return to A from A.

Lemma 7 Let A be a rock.

1. For all s 2 �, L(s; A) = 1

2. sup

s2A

E

s

[�

A

] <1

Proof: From Lemmas 3 and 4, there exists a � > 0 such that from any s 2 �, A is reached within k

steps for some �nite k > 0 (k depends on which algorithm variation is used). Consider a di�erent Markov

chain, �

0

, where on any step the chain transitions to A with probability �. Since �

0

is everywhere less

likely (or equally likely) to go A, the probability of getting to A in a �nite time by �

0

, L

0

(s; A), cannot

be greater than L(s; A). A similar relation holds holds for the expected return time, sup

s2A

E

0

s

[�

A

], except

that we must remember that one step of �

0

is less e�cient at reaching A than k steps of �. Therefore,

k sup

s2A

E

0

[�

A

] � sup

s2A

E[�

A

].

The probability of getting to A for the �rst time in exactly i + 1 steps under �

0

is the probability of

missing A for the �rst i steps, and then transitioning to A on the (i+1)

th

step. Summing this over all �nite

length sequences, we obtain for any s

L

0

(s; A) = �

1

X

i=0

(1� �)

i

= �

1

�

= 1

Therefore, 1 � L(s; A) � L

0

(s; a) = 1.

The expected �rst arrival time from a state s for �

0

is

E

0

s

[�

A

] = �

1

X

i=1

i(1 � �)

i�1

so

E

s

[�

A

] � kE

0

s

[�

A

] =

�k

1� �

1

X

i=1

i(1 � �)

i

=

�k

1� �

1� �

�

2

=

k

�

for any s 2 �, and therefore for any s 2 A. Thus, sup

s2A

E

s

[�

A

] � k=� <1.

The notion of irreducibility is a fairly weak version of stability, since it says only that all S are reachable

from all s in a �nite number of steps with nonzero probability. A stronger form of stability is called recurrence,

which basically says that all S can be reached from any s in a �nite number of steps with probability 1.

While irreducibility says that the chain can visit all parts of the state space, recurrence says that the chain

will (a.c.) visit all parts of the state space. On a �nite state space, the concepts are equivalent, but on an

in�nite state space they are quite distinct.

More precisely, a Markov chain is said to be recurrent when there is a measure � such that for every

starting point s 2 �, L(s; S) = 1 and E

s

[�

S

] <1 whenever �(S) > 0.

Lemma 8 � is recurrent

5

.

Proof: Theorem 8.3.6 of

[

Meyn and Tweedie, 1993

]

says that if � is �-irreducible, A is petite

6

, and

L(s; A) = 1 for all s 2 A, then � is recurrent. All these conditions have been established by the lemmas

already given.

5

� is actually Harris recurrent, which is established during the proof of Theorem 7.

6

Lemma 5 establishes that a rock A is small, so by

[

Meyn and Tweedie, 1993, Proposition 5.5.3

]

, A is petite. By

[

Meyn and

Tweedie, 1993, Theorem 5.5.7

]

, petite sets and small sets are equivalent concepts when � is irreducible and aperiodic. For this

reason, I have not included the de�nition of petite sets here.
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A probability distribution � on (�;B) is said to be stationary for � when

�(S) =

Z

� (s; S)�(ds)

In other words, once the chain has reached an occupation distribution �, is stays there.

Theorem 7 Iterative dynamic discretization asymptotically converges to a unique stationary probability

distribution, �, over the space of possible discretizations, in the following sense. Let P

k

(s; S) denote the

distribution over possible discretizations after k steps of IDD when started from the discretization s.

� For the algorithm variant in which the variable to discretize at each step is chosen at random, there is

a unique distribution � such that for any s 2 �

sup

S2B

jP

k

(s; S) � �(S)j �! 0

as k �!1.

� For the algorithm variant in which the variable to discretize at each step is chosen according to a

repeating `-step pattern, the asymptotic distribution at each step of the pattern is unique, i.e., for any

starting point s 2 �,

sup

S2B

jP

`k+j

(s; S) � �

j

(S)j �! 0

as k �!1 for j = 1; ::; `.

Proof: First, simply consider convergence, as in the �rst case, to a single unique distribution, by considering

the chain �

`

(in the second case, this corresponds to the distribution �

`

). Once the uniqueness of and

convergence to �

`

is established, the uniqueness and convergence for the other �

j

in the second condition is

immediate.

Theorem 10.0.1 of

[

Meyn and Tweedie, 1993

]

states when � is recurrent, and when there exists a petite

set A such that

sup

s2A

E

s

[�

A

] <1

then � admits a unique invariant �nite normalized measure � on B. Because � is �-irreducible by Lemma 6

and aperiodic by Lemma 4, and the rock A is small by Lemma 5, A is petite; recurrence is established

by Lemma 8; and the additional requirement is established by Lemma 7. Therefore, the existence and

uniqueness of � on �

`

is established.

The positivity of p ensures that �

`

is absolutely continuous with respect to �. Corollary 1 of

[

Tierney,

1994

]

states that �-irreducibility for stationary � with absolute continuity implies Harris recurrence. Harris

recurrence is a still stronger form of recurrence in which every S 2 B is visited in�nitely often with probability

1. Tierney's corollary thus establishes that �

`

is Harris recurrent. One can note that

[

Tierney, 1994,

Theorem 1

]

establishes the current theorem for convergence in total variation distance. However, most

readers will �nd convergence in maximum absolute deviation, as stated above in the theorem statement,

easier to understand. This is established by the Aperiodic Ergodic Theorem,

[

Meyn and Tweedie, 1993,

Theorem 13.0.1

]

, which guarantees convergence in this sense for an aperiodic Harris recurrent chain with a

unique invariant measure (�) when � is a probability distribution.

As a note to help the reader concerning Theorem 7, in the case of a pattern-based algorithm, you can

imagine treating an entire run through a pattern as if it were a single (mega-)step. Thus, the discretization

would only be examined after each pass. This simpli�es the statement of the second case to something

like the �rst case, i.e., that the algorithm approaches a unique distribution �. The theorem describes what

happens more generally if the process is examined at any step. For the analogous result for Gibbs sampling

(Theorem 6 in Chapter 3 on Page 69), the distribution does not depend on what step of the pattern the

process is stopped at. It is interesting to note that the same equivalence is not guaranteed by iterative

dynamic discretization. Because of this, this more elaborate statement of Theorem 7 is informative.
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5.3 Characterization of Asymptotic Behavior

Theorem 7 establishes that iterative dynamic discretization converges to some distribution over the space

of possible discretizations. It does not, however, indicate what that distribution is, or properties it has, or

how it relates to the distribution of interest, p. This characterization of the asymptotic behavior remains an

open problem, one that I have not yet been able to solve.

When a model has exactly two variables, it is possible to characterize the asymptotic behavior in a simple

and useful way. I introduce the uniform projection operation, which produces a distribution over the space

of con�gurations from � (which is a distribution over the space of discretizations). It would be nice if this

projected distribution was equal to p; however, this is not the case. I do show that in the two-variable

case, the projected distribution agrees with p on marginals. In other words, iterative dynamic discretization

can be viewed as visiting a collection of con�gurations at each step, and all these con�gurations have an

asymptotic distribution ~p that agrees with p on both marginal distributions. In this way, iterative dynamic

discretization can be conveniently viewed as an ampli�ed Gibbs sampling algorithm.

If one is interested in estimating marginal distributions, then sampling from a distribution that agrees

with p on marginals is perfectly acceptable | the resulting marginal estimates will be the same.

Does ~p, the projected distribution, agree with p on marginals when there is more than two variables?

It is shown (unfortunately) that this is not the case. Thus far, no simple characterization of p̂ (or other

relationship between � and p) has been discovered.

Finally, one should also recall that the pure Gibbs sampling algorithm results as a special case when

m = 1. In this case, p̂ is obviously equal to p.

De�nition 3 Let � be a distribution on (�;B) | the space of possible discretizations. The uniform projec-

tion of � onto (
;F) | the space of possible con�gurations | is the distribution p̂[�] on (
;F), where the

probability p̂[�](X) is the probability that a con�guration, x, drawn by the following procedure is in X:

1. s � �

(i.e., draw s 2 � according to �.)

2. x � U [s]

(i.e., draw x uniformly from the con�gurations in s.)

As is customary with probability distribution notations, I will use the same symbol for marginal distri-

butions. In other words, p̂

k

s

(x

i

) is the marginal of p̂

k

s

(x) on x

i

.

De�nition 4 Two distributions on (
;F), 
 = 


1

� ::�


n

, p and p̂, are said to agree on marginals when

p(X

i

) = p̂(X

i

) for all X

i

2 F

i

and all i = 1; ::; n.

Lemma 9 For any p, there exists a distribution � on (�;B) whose projection agrees with p on marginals.

Proof: Simply select a discretization by selecting m samples for each x

i

according to p(x

i

) for all i. The

resulting probability over possible discretizations, �, obviously agrees with p on marginals.

Lemma 10 Suppose iterative dynamic discretization is run on a model containing exactly two variables. If

the projection of � to (
;F) ever agrees with p on marginals, then all projections for subsequent iterations

of iterative dynamic discretization will also agree with p on marginals.

Proof: Let x and y denote the variables in the model. Suppose ~p agrees with p on marginals, and consider

the projected discretization for the next discretization. Without loss of generality, suppose x is being

discretized.

An individual point, x, is chosen according to (5.1). This is equivalent to choosing y according to w

y

,

then choosing x from p(xjy = y)

[

Devroye, 1986, Page 66

]

.

During the projection, there are two possibilities. The values of x; y might be chosen so that y is the value

used in 5:1 when this particular x set at the time the discretization of x was chosen. This occurs with (at

least) 1=m probability, since there are (at most) m possible values for y. If so, ~p(x; y) = p(xjy)~p(y) = p(x; y).

If this does not occur, then ~p(x; y) = p(y)

R

p(xjy

0

)d(~p(y

0

) = p(y)

R

p(xjy

0

)d(py

0

) = p(y)p(x), which again,

agrees with p on marginals.
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Proposition 5 Consider a model with exactly two variables. If � (or �

j

) is the unique asymptotic distribu-

tion over the space of discretization reached by iterative dynamic discretization on this model (whose existence

and uniqueness is guaranteed by Theorem 7), then the projection of �, p̂[�] agrees with p on marginals.

Proof: Suppose iterative dynamic discretization is started using a con�guration drawn from a �

0

with a

projection that agrees with p on marginals. The existence of such a �

0

is established by Lemma 9. Then by

Lemma 10, all subsequent projections of occupancy distributions for � will also agree with p on marginals,

including the asymptotic distribution. (Note that uniform convergence on marginals follows from uniform

convergence of P

k

to �.) Since the asymptotic distribution is unique and reached from all initial starting

points (as established by Theorem 7), the proof is complete.

Proposition 6 In general, for a model with three or more variables, and with m � 2, the asymptotic

distribution � does not agree with p on marginals.

Proof: I simply give an example where the asymptotic distribution does not agree on marginals. However,

because it is extremely di�cult to identify the asymptotic distribution explicitly, the proof that the asymp-

totic distribution for this example cannot agree with p on marginals is by contradiction, showing simply that

the two conditions cannot both hold.

Let 


x

= 


y

= 


z

= [�1; 1], i.e., there are three variables, x;y; z, that take on values between �1 and

1. Let the joint density be given by

p(x; y; z) =

�

1=2 x; y; z � 0

1=14 otherwise

Suppose m = 2 and a uniform weighting scheme is used, and the variable to rediscretize is chosen randomly

(the fully homogeneous case). Note that the distribution is totally symmetric among all three variables, and

the same will hold for the asymptotic distribution. Also,

p(xjy; z) =

8

>

<

>

:

7=8 x; y; z � 0

1=8 x < 0; y; z � 0

1=2 otherwise

With uniform weighting, each point x in the rediscretization of x is picked by selecting y; z � p̂(y; z) and

then picking a values x � p(xjy; z). Here, m = 2 points are picked.

Assume that p̂ agrees with p on marginals. Since p̂ is a stationary distribution, p̂(x � 0) = p(x � 0) after

a rediscretization, and

p̂(x � 0) =

7

8

p̂(y � 0; z � 0) +

1

2

(1� p̂(y � 0)) = p(x � 0) =

7

8

p(y � 0; z � 0) +

1

2

(1 � p(y � 0))

so p̂(y � 0; z � 0) = p(y � 0; z � 0). If this last equality did not hold, then p̂ could not possibly be the

asymptotic distribution. Since the model is totally symmetric for all three variables, p̂ is the asymptotic

distribution only if p̂(x � 0; y � 0) = p(x � 0; y � 0).

Consider p̂(x � 0; y � 0) just after x has been rediscretized. Suppose a con�guration is drawn uniformly

from the current discretization, and x; y � 0. This value for x had been chosen and placed in the discretization

by sampling from p(xjy

0

; z

0

) for some y

0

; z

0

. It is possible that this y

0

� 0, in which case, the sampling

distribution matches p(xjy), but it is also possible that x � 0 was drawn even though y

0

< 0, and in this

case, the distribution di�ers. Since there are only two values for y, p̂(y � 0) = p(y � 0) = 5=7, this latter

case occurs with probability

1

2

2

7

=

1

7

, so

p̂(x; y � 0) =

6

7

p(x; y � 0) +

1

7

p(x � 0)p(y � 0) =

6

7

4

7

+

1

7

5

7

=

29

49

Keep in mind that this expression is based on the assumption that p̂ agreed with p on marginals prior and after

the discretization of x. Since p̂ can agree on marginals and be stationary only if p̂(x; y � 0) = p(x; y � 0),

we have a contradiction since p(x; y � 0) = 4=7 but p̂(x; y � 0) = 29=49. Therefore, in this example, p̂

cannot be both stationary and agree on marginals.
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An interesting area for future research is to attempt to modify the iterative dynamic discretization

algorithm slightly in such a way so that the uniform projection of the asymptotic distribution is either equal

to p or at least agrees with p on marginals. I believe that such an alteration is possible by appending a

Metropolis-Hastings-style acceptance loop (

[

Metropolis et al., 1953, Hastings, 1970, Smith and Roberts, 1993,

Neal, 1993

]

) around a discretization step. The idea is that the current discretization step proposes a new

discretization, s. A suitably chosen acceptance probability, �(s; s

0

), is computed, based on the current

discretization s and the proposed discretization s

0

. With probability �(s; s

0

), the proposed discretization

becomes the next discretization, otherwise the same discretization is repeated (in which case, there is no

need to repeat a propagation). The acceptance probability has the e�ect of distorting the uniform projection

distribution just enough so as to make it equal to p, or at least equal to a distribution that agrees with p

on marginals (if both are possible, the latter may be possible with fewer rejections). This is similar to the

ideas behind rejection sampling (Section 4.3.3). A direct application of the Metropolis-Hastings algorithm

is not quite possible to accomplish this, but some minor variation of it may be.

5.4 Combining Stochastic Simulation & Exact Propagation

The perspective a�orded by the analysis in this chapter suggests one reasonable way to view iterative

dynamic discretization is as a Markov Chain Monte Carlo (MCMC) algorithm. However, MCMC algorithms

typically visit con�gurations according to an ergodic Markov chain, while iterative dynamic discretization

visits discretizations (i.e., collections of con�gurations) according to an ergodic Markov chain.

Gibbs sampling has been applied to optimize MAP problems. In these scenarios, a sequence of con�gu-

rations are drawn from p using MCMC, and the one with the highest probability so far is remembered. A

recurrent Markov chain visits all parts of the state space with probability 1, so this technique provides a cer-

tain guarantee that the true optimumwill be found. Furthermore, since (asymptotically) higher probability

con�gurations are more likely to be visited than lower probability con�gurations, one heuristically expects

to visit good con�gurations fairly quickly. It is important to note that pure Gibbs sampling is typically not

the best choice for MAP optimization problems | the related MCMC technique called simulated annealing

(

[

Kirkpatrick et al., 1983

]

) is usually considered superior for optimization problems, although Gibbs or re-

lated MCMC techniques are often applied in optimization problems (e.g.,

[

Bielza et al., 1996

]

). Simulated

annealing uses the basic Gibbs sampling procedure, but during sampling the underlying distribution is slowly

changed, starting with a very di�use distribution with high mobility, and progressing to a distribution where

the highest probability con�gurations are accentuated.

In any event, these suggest an interesting way to view the iterative dynamic discretization. It is a

MCMC algorithm, but at each iteration a large number of con�gurations are considered. Within an iter-

ation, exact propagation is used to �nd the optimum among this collection of con�gurations. In this way,

iterative dynamic discretization provides a means for combining MCMC methods with exact propagation

methods. MCMC methods allow the algorithm to visit the state space thoroughly (recurrently), while exact

propagation techniques allow large collections of con�gurations to be analyzed in one step.

I believe this combination is useful for many types of problems, not just MAP optimization. For example,

there may be ways to use this for computing expected values or even marginal estimates. However, so far I

have been not been successful at a theoretical analysis that would make this claim credible.

In any event, in order for this combination of MCMC with exact propagation to be successful, it is nec-

essary for the underlying graph structure to be amenable to propagation, at least when individual variables

take on only a small number of values. In other words, the triangulated dependency graph must have a small

number of variables in each clique. One might at �rst think that such a dependency graph is amenable to

propagation techniques already, so that the application of approximation techniques is uncalled for; however,

this is not always the case. What really determines the e�ciency of exact propagation techniques is the

number of possible joint values the variables within a clique can take on

7

. If one or more individual variables

can take on a huge number of possible values, then the number of possible joint values in a clique can also

be huge. It is in such a situation that this combination is appropriate. If the variables are continuous, then

7

This applies, of course, to nonparametric potential representations. A conjugate parametric potential representation's

e�ciency might likewise be compared to the number of free parameters within a clique.
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there are an in�nite number of possible values no matter how many variables are within the clique. When

the potentials involved are in a nonconjugate form (relative to the graphical structure), then clearly exact

propagation is not automatically e�cient.

Suppose one has a graph that does not have only a few variables per clique. One possibility is to conglom-

erate variables into \mega-variables," so that one has only a small number of variables once again. These

mega-variables can then be iteratively sampled using iterative dynamic discretization. The conglomeration

of variables can be readily based on the triangulation of a graph. Any two variables that appear in exactly

the same set of cliques in the triangulated graph are conglomerated. From this, the combination of the

methods is actually a very general technique.

The discussion here is intended simply to provide a useful perspective on the iterative dynamic dis-

cretization technique. Viewing it as a combination of MCMC and exact propagation appears to be a very

legitimate perspective (one of many) and may provide some readers with a more thorough understanding of

the algorithm. There are several aspects of this interpretation that I have not explored in this thesis.

5.5 Summary

This chapter has utilized mathematical tools to explore various aspects of the asymptotic behavior of a class

of iterative dynamic discretization algorithms. In terms of Figure 4.1 on Page 78, the analysis assumes f(x

i

)

is estimated in Step 6 by the Markov blanket posterior's method, but with any of the possible weighting

schemes. For Step 7, it is assumed that a discretization is chosen from f(x

i

) using random sampling.

The main result is that under mild positivity assumptions about the distribution of interest, the technique

converges ergodically to a unique distribution over the space of possible discrete models, such that the

limiting distribution obtained does not depend on the initial discretization. The recurrence of the technique

ensures that a solution arbitrarily close to the global optimum MAP con�guration will always be found if

the algorithm is run su�ciently long.

Although the limiting behavior of iterative dynamic discretization does not depend on the initial dis-

cretization, a full and useful characterization of this behavior, and how it relates to the distribution of

interest, remains an open question. A characterization along these lines would be required for using iterative

dynamic discretization to compute marginal posterior inferences, and is therefore of great interest for future

work.

It was only near the �nal stages of this research that I realized the close connection that iterative model

construction techniques have (or can be designed to have) to Markov chain Monte Carlo techniques. This is

a very fruitful connection to remember because it opens up formal means for understanding or characterizing

the asymptotic characteristics of the algorithm's behavior. Keeping this in mind when inventing an iterative

model construction algorithm can also help to ensure that the process is recurrent, i.e., that it does not

permanently rule out some possible solution. These consideration also suggest that adding randomness to

the model construction step can be of great bene�t in an iterative framework, especially when it comes to

asymptotic behavior.



Chapter 6

Empirical Evaluation

6.1 Scope and Rationale of Evaluation

At the current time, several aspects of the algorithm's behavior can only be examined empirically. While it

might be nice to perform an exhaustive empirical exploration of the performance of all variants of iterative

dynamic discretization over a wide spectrum of segmentation problems and problem instances, this space is

much too broad to cover in anything close to an exhaustive manner. Perhaps even more importantly, it is

not entirely clear that anything useful would be learned from such an exercise. Therefore, it is important to

focus the empirical evaluation carefully to address speci�c questions.

To this end, there are two issues that I wish to address with the empirical study in this section:

1. Can iterative dynamic discretization substantially reduce the number of iterations required for conver-

gence compared to Gibbs sampling?

2. How important are each of the algorithm's variations to overall performance?

In a sense, the �rst of these is an empirical existence proof. The case is made with a single example where

iterative dynamic discretization signi�cantly outperforms over Gibbs sampling. Finding such an example

was not di�cult.

A number of elaborations on the �rst question are possible as well. How often does iterative dynamic

discretization signi�cantly reduce the number of iterations required compared to Gibbs sampling? By how

many iterations? Also, is iterative dynamic discretization more e�cient than Gibbs sampling in terms of

C.P.U. cycles? This latter question is relevant since iterative dynamic discretization requires more com-

putation per iteration than Gibbs sampling. Unfortunately, it does not seem possible to give meaningful

(empirical) answers to any of these questions. All of these questions are highly sensitive to the precise

time-series models and data used. E�ciency further depends on the domain/model-speci�c property of how

e�ciently the basic sampling operation (picking x

i

from p(x

i

jx

j 6=i

)) can be performed, and on the e�ciency

of the implementation. The examples show that the number of iterations can be reduced very substantially,

but conclusions beyond this should be reached with great caution.

The study of variations to the algorithm is too vast to take on in any comprehensive fashion, so some care

must be taken. It is certainly not possible to compare every combination of variations in a formal empirical

study, since the number of combinations considered would be quite substantial. There are also distinct limits

to the number of di�erent domain models (i.e., di�erent HSSMMs) and number of distinct problem instances

per model that can be reported. I have organized this part of the evaluation based on personal experience

I have had experimenting with implementations of the algorithm and its graphical interface. Some of these

experiences are described in Section 6.11, but a number of heuristic aspects of that experience are much more

di�cult to elucidate. It is possible to quickly experiment with several di�erent models and several di�erent

(arti�cially generated) time-series using the graphical interface, and to quickly obtain an intuitive feeling for

what works and what does not for certain models. Based on this experience, I have organized the empirical

exploration in an incremental and systematic fashion, adding one feature at a time to the algorithm and

exploring the impact of this over repeated runs. Thus, after reaching the �nal (superior) version, there is at

105
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least some indication of the contribution that each little variation has on the end result. In order to make this

incremental progression maximally meaningful, I perform the progression using a single problem instance.

Thus, the performance of each variant can directly be compared to the performance of other variations.

From my experiences, the example I have picked seems to be reasonably representative of other models and

data that I have played with

1

. I believe that this format communicates more to the reader than a study

across multiple di�erent models and problem instances would. Although it is somewhat informative to see

that one variation outperforms another, it is far more informative to understand the problem characteristics

that allow one variation to outperform the other. Much of the deeper understanding is better obtained by

looking at the speci�c phenomena and artifacts discussed in Section 6.11.

The model used for these runs is given in Appendix A.

6.2 Procedure and Evaluation

The time-series data used for these experiments was generated randomly according to the same model used

to segment it. Therefore, the model is known to be a \correct" description

2

of the process that generated

the data. Furthermore, because the data is synthetically generated, a ground truth parse (the times and

states picked during the simulation) is available for comparison. Figure 6.1 shows the time-series data used

for these experiments along with the ground truth parse.

Prior to each run, the program was supplied with the exact value for t

20

in the ground truth parse. In

other words, the time of the 20

th

transition was given. In a real application, the value of t

20

would never be

available. However, for empirical evaluation supplying this value has a number of bene�ts. First of all, it

ensures that relative evaluations are always comparing apples with apples. All parses compared always span

the same time interval. Thus, di�erences in evaluations arising only as a result of a di�erent amounts of

data being covered cannot show up. Another advantage of supplying t

20

is that the style of inference better

matches that found in most applications of Bayesian networks, that is, where evidence typically occurs in

the leaf nodes. t

20

is essentially our leaf node in this application.

For all variations that follow, the propagation graph is initially grown to length 20, so that after growing

stage completes, the propagation graph contains the variables t

0

; s

0

; ::; t

20

; s

20

. During the growing stage,

there is no rediscretization.

For all methods that rediscretize one variable per iteration, t

19

is rediscretized �rst, followed by t

18

, and

so on down to t

1

, and then the order repeated

3

. Some of the methods below rediscretize all variables in one

iteration, and for them, the order has no e�ect.

At each iteration, the optimal con�guration given the current discretization is extracted (using the

propagation algorithm, Section 3.1.1, Figure 3.9 on Page 56). For (focussed) Gibbs sampling, this requires

only an optimization over the state variables, since only one value exists for each transition time variable.

For iterative discretization methods, the optimization is also over the m possible transition times identi�ed

by the discretization. This con�guration, �, is then evaluated by using Equation (2.3) on Page 35, but

with � = 1. Estimating the normalizing factor � = P (X) is infeasible. This � is compared against the

1

One exception to this has been that I have encounteredmany instances where the problems are considerably easier to solve

than the one given here. A good example is where the transitions are deterministic or nearly so, and data has little noise. Some

real Shuttle data fell in this category, and most of the iterative dynamic discretization methods performed very well to where

it was very di�cult to di�erentiate any signi�cant performance di�erences between them. The problem instance used here was

chosen to contain enough ambiguity so as to separate out the good variations from the bad.

2

However, the HSSMM is only a partial speci�cation of the total process since it is somewhat of a qualitative model. The

simulator must make additional assumptions that the segmentation algorithm does not use. For example, shape recognizers

look only at how linear a segment of data appears, while the simulator, even when creating a linear shaped signal, must pick

absolute values for the end points of the segment. But, the simulated data is consistent here with all aspects of the more

qualitative model that is used for parsing.

3

The forward natural order and backward natural order generally have equal asymptotic convergence rate. This equivalence

in rates is proven by

[

Roberts and Sahu, 1996

]

for a variety of models in which exact convergence rates be analytically derived.
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0

20

40

60

80

100

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Seconds

Time-Series Data
Ground-Truth Parse

Ground Truth Parse

i s

i

t

i

0 longRise 0

1 longFall 217

2 longRise 358

3 shortFall 940

4 longRise 1086

5 longRise 1643

6 longRise 2584

7 longFall 3149

8 longFall 3819

9 shortFall 4795

10 longRise 5269

11 longRise 5725

12 shortRise 5822

13 longFall 6103

14 shortRise 6487

15 longFall 6912

16 shortRise 7248

17 longFall 7431

18 longRise 7996

19 longFall 8189

20 | 8610

Figure 6.1: Time-series data used for experiments and the ground truth parse (used to generate the data).

In the table, s

i

exists from t

i

to t

i+1

.
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ground-truth parse, �

�

, yielding the following evaluation metric (known as a Bayes factor):

Eval(�) = ln

P (�jX)

P (�

�

jX)

(6.1)

This quantity does not require an evaluation of the normalization constant � since it appears in both

P (�jX) and P (�

�

jX) and thus it cancels out. A larger value for Eval(�) indicates a better segmentation,

any segmentation with a negative evaluation is inferior to the ground truth parse, while any segmentation

with a positive evaluation is superior to the ground truth parse.

Intuitively one might think the ground truth segmentation is the optimal parse, but this is not the case.

The optimal segmentation, as found by the iterative dynamic discretization algorithm, appears in Figure 6.17

on Page 122 (which is where the variant of the algorithm that found that segmentation is discussed). Rare

events occasionally occur in the ground truth parse, so that some other interpretation is actually superior.

For example, s

1

= longFall in the ground truth parse (Figure 6.1), so that the actual duration between t

1

and t

2

is chosen randomly during the simulation from c

longFall

= GammaDist[� = 3; � = 200]. Although

this distribution has a mean of 600 seconds, there is also about 1 chance in 11 that the duration chosen is less

than 210 seconds (the mean for c

shortFall

). In fact, t

2

� t

1

= 141 seconds in the ground truth parse. Even

though the data was generated between those times using the longFall state, the resulting data appears

much more consistent with the shortFall state. Thus, the parse identical to the ground truth parse in

Figure 6.1 except with s

1

= shortFall is a better interpretation of the data than the ground truth parse.

Also, the model speci�es that a rising transition is followed by a falling transition with probability 0.8;

however, due to the randomness, three rising transitions occasionally occur in succession. There is a high

expectation in such a case that the middle segment will be falling, and when this is weighed against the

labeling of what appears to be a rising signal as a falling signal, it sometimes is better to label it as rising.

This happens at between t

5

{t

6

. The smaller the slope of the signal, or the fewer data points in that segment,

the more likely it is for an expectation to dominate the apparent shape in the data. Also, depending on the

relative strength of various expectations and the amount of noise in the data, it can be better to segment

di�erently to �t certain noisy regions. The impact of expectations versus data is considered in Section 7.1.

The same sort of phenomena occurs at several other transitions, making the optimal parse

4

for this data

approximately 2e6 times better (according to Equation (2.3)) than �, which the above metric assigns a score

of about 14.7.

6.3 Gibbs Sampling

As an initial baseline, Gibbs sampling was run on the submodel p(t

1

; t

2

; :::; t

19

). The value for t

0

and t

20

were given. Since the state variables, s

0

; ::; s

20

, each take on only four possible values, it was not necessary to

sample these, so focussed Gibbs sampling (Section 3.4.1) could be employed. Since only the time variables

are discretized by iterative dynamic discretization, this would seem to be the best basis for comparison

with iterative dynamic discretization. Furthermore, in terms of iterations required

5

, focussed Gibbs is more

challenging to beat than pure Gibbs, so it provides a more substantial baseline.

Each iteration of Gibbs sampling results in a new single con�guration. Figure 6.2 plots this evaluation

as a function of iterations (for a single run), showing Gibbs sampling jumping around as it visits possible

segmentations. Recall that asymptotically, Gibbs sampling converges to a distribution that visits possible

segmentations according to P (�jX). (The performance of Gibbs sampling at any given iteration for this task

can be taken to be the evaluation of the best con�guration visited so far.) Figure 6.3 shows the performance

over ten runs of Gibbs sampling on the example problem. In these graphs, the x-axis shows total iterations,

where one total iteration corresponds to changing all 19 variables t

19

::t

1

. So the 1,000 total iterations shown

on the graphs correspond to 19,000 steps of Gibbs sampling.

4

Assuming that the best parse found during the course of all the experiments run with this data is very close to being

optimal.

5

In terms of C.P.U. cycles, Gibbs may outperform focussed Gibbs, since focussed Gibbs does more work per iteration.
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Figure 6.2: One run of Gibbs sampling. Y-axis shows the evaluation of the current discretization at each

iteration.

Of the ten runs, the best segmentation found within the 1,000 total iterations (19,000 sampling steps)

evaluated to Eval(�) = 10:12. None of the 10 runs found a near optimum segmentation within the �rst

1,000 total iterations, although theory tells us that all runs are guaranteed to eventually get there if run

long enough.

Of the ten runs, the �nal parse for the best and worst runs are shown in Figure 6.4. These are somewhat

informative for understanding why the runs did not �nd the optimum in that amount of time. There are two

e�ects that show up. First, each of the two �nal segmentations is in a qualitative maximum. In the �rst case,

it has lumped the three consecutive rising segments from 5269 through 6103 into a single transition. In the

second case, the three consecutive upward transitions from 1086 through 3149 have been lumped together.

In both cases, the data in that region is a pretty good �t to a straight line. Any movement of a single

boundary into one of these segments causes some other segment to have a very nonlinear shape. Several

transition times have to move simultaneously to get out of this qualitative local maximum. The second

phenomena is that many of the individual transition times appear not locally optimized. For example, in

the �rst graph, a distinct transition occurs at 5269, but the parse shows the transition at about 5369. Many

of the other transitions are similarly o� just slightly. This occurs because at every iteration, the exact value

of the transition time is chosen stochastically. For a parse to have all 19 transition times exactly on the best

transition time, all random choices would have to land exactly on those points in the same (total) iteration.

The ten runs represent 10,000 total iterations, and this combination simply never occurs in that amount of

trials. Since the best point for a transition can be kept from one iteration to the next, iterative dynamic

discretization provides a way to quickly overcome this drawback (see Sections 4.3.1 and 6.5). This second

problem is even a little more subtle than this. Consider the transition that occurs in the data at 5269.

Recall that f

mbp

(t

i

) depends on the data between t

i�1

and t

i+1

, so one would expect a sharp probability

peak in f

mbp

around 5269, and therefore very high probability of selecting a transition very close to that

value. However, the previous transition has also been placed slightly before the previous transition in the

data in Figure 6.4, i.e., at 4584. It is actually a better �t to put two straight lines from 4584 to 4369 and

from 4369 to 6103 than it is to put two straight lines from 4584 to 4269 and from 4269 to 6103. In reality,

f

mbp

actually has its maximum around 5369 rather than 5269. In other words, locally 5369 is an optimal
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Figure 6.3: Performance of 10 individual runs of Gibbs sampling. The graph on the left shows performance

of the individual runs, while the graph on the right shows the average (and minimum and maximum) of

these at each iteration.
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Figure 6.4: Best (left) and worst (right) parses returned by the 10 runs of Gibbs sampling. The parses

evaluated to 10.1 and 6.5 respectively.
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Figure 6.5: Left graph shows ten individuals runs of plain iterative dynamic discretization using m = 10

with no bells and whistles. No points from the previous discretization are kept. The right graph shows

the averages over these and ten additional runs, along with the minimum and maximum evaluation at each

iteration over the 20 runs. Also shown on the right is the average for Gibbs over the �rst 100 total iterations

(from Figure 6.3).

transition, even though it does not land exactly on the obvious transition point.

These experiments demonstrate that Gibbs sampling gets trapped in locally immobile segmentations.

These are similar to local optimums, expect that theory tells us that Gibbs sampling will eventually (with

probability 1) escape from them, it is just that it can take a long time.

6.4 Pure Discretization

I now consider the �rst version of iterative dynamic discretization.

In these experiments, ten new discrete points are chosen for each time variable (i.e., m = 10) at each

iteration. Unlike variations that follow, no points from the previous discretization are kept. The ten points

are chosen using f

mbp

(with the normal sum potential weighting), and like Gibbs sampling, one variable

is reframed on each step. This requires a propagation after every step. However, once again I plot total

iterations; hence, one total iteration corresponds to 19 steps, with each step consisting of a rediscretization of

one variable and a full propagation on the discrete model. This is the natural starting point for comparison.

Because the later versions of iterative dynamic discretization converge very rapidly, I used the convention

of running iterative dynamic discretization methods for a maximum of only 100 total iterations

6

(= 1900

reframing steps). Figure 6.5 shows the performance of twenty

7

runs for this pure version of iterative dynamic

discretization (i.e., for only 1/10 the amount of time shown in the Gibbs sampling graph).

Although iterative dynamic discretization gets o� to a much quicker start than Gibbs, what is extremely

surprising is that in terms of the number of iterations, the performance of this variation is comparable to

Gibbs sampling (after 100 iterations). Because it does much more work per iteration than Gibbs sampling,

it is clearly not competitive.

Understanding this lack of improvement is informative. The bottom line is that the biggest determiner

of success is mobility| the ability to escape locally immobile regions. Gibbs gets stuck because often pretty

good interpretations are very immobile locally | moving from those to a better interpretation requires

simultaneous unlikely movement of several transition points. The use of multiple values at each variable by

iterative dynamic discretization both increases and decreases mobility. The increase in mobility comes from

6

I did extended a few runs to 1,000 iterations and found no surprises.

7

An extra ten runs (for a total of 20) to obtain the graph of the average performance because of indications that the random

sampling during the �rst 10 runs was not representative of the average performance. The graph on the left of Figure 6.5 shows

only the �rst ten runs due to the clutter that would result if all twenty were plotted.
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using more points, and therefore being able to explore more territory within a single iteration. Exploring

more territory results in greater mobility. Also, multiple points consistently allow the system to get o� to a

better start. The decrease in mobility is less intuitive.

How is it that multiple points can decrease mobility? This is a result of changing one variable at a time,

and the inter-variable interactions that emerge as a result. To see this occurs, consider an example.

Suppose the system has found a parse that is locally immobile. In fact, it is so immobile that simultaneous

changes to four transition times would be necessary to �nd a better parse. Just to be concrete, suppose

transition times t

1

, t

2

, t

3

, and t

4

must all be simultaneously changed to improve the segmentation.

The number of changes that must occur is only one aspect of mobility (or lack of it). The other is how

likely each of these changes is to actually occur during sampling. However, the key here is that these odds

are closely interrelated.

The current value of t

2

is very immobile given t

1

and t

3

. Thus, the chances of it escaping to a region

containing a better parse are fairly low as long as t

1

and t

3

have their current values. However, if Gibbs

sampling suddenly, by chance, makes the necessary unlikely change to t

1

, the mobility of t

2

may be suddenly

increased. Much of its stability was a result of the previous setting for t

1

, but now that t

1

has escaped,

t

2

's mobility is improved. Because of this, in Gibbs sampling, the joint mobility of t

1

; ::; t

4

can be can be

considerably less than the combination of their individual mobilities given the current con�guration. This

phenomena is an indirect bene�t arising from a certain lack of memory of Gibbs sampling.

The reduction in mobility for iterative dynamic discretization results because the use of multiple points

discourages this bene�cial lack of memory phenomena. In this case, t

2

maybe very immobile given the current

best discrete values for t

1

and t

3

. Even though a few wild points may be chosen in the new discretization for

t

1

, it is quite likely that one or more new locally optimum discrete points will be chosen. The goodness of

the few wild points cannot be appreciated until all four changes (t

1

through t

4

) occur; however, because of

those locally optimum points chosen for t

1

, and because these are then weighted favorably, the mobility of

t

2

is not improved. Thus, multiple points make it much more di�cult for this synergistic (loss of memory)

interaction to occur. It is in this way that multiple points can also serve to reduce mobility. This decrease

in mobility is apparent from the 
atness of the individual curves in Figure 6.5. These indicate a very quick

adjustment to locally optimum con�gurations, with little mobility out of these after they are reached.

It may be this same phenomena that is responsible for the poor performance of (pure) adaptive direction

sampling observed in

[

Gilks et al., 1994

]

. That technique also utilized multiple points (in a rather di�erent

fashion) to control sampling.

The two e�ects seem to be comparable for this version of iterative dynamic discretization, hence the total

iterations is comparable to that of Gibbs sampling. However, many of the variations that are possible with

iterative dynamic discretization can both reduce this e�ect, and introduce additional sources of power that

are not possible with Gibbs sampling.

6.5 Keeping The Best

The next variation considered is that of retaining the value from the optimum con�guration (relative to the

previous discretization) in the new discretization. There are three bene�ts from doing so:

1. The current con�guration can only improve with additional iterations.

2. Local optimization is enhanced.

3. Numerical stabilities of certain algorithm variations are eliminated, therefore enabling those variations.

By keeping the best value, the optimum con�guration from the previous discretization is still a con�g-

uration in the new discretization. Either it remains the optimum, or some other con�guration beats it, in

which case the optimum con�guration improves.

It was previously noted that several of the transition times in Figure 6.4 do not even appear to be locally

optimal. By (�guratively speaking) keeping one's thumb on the best value for t

i

so far, local optimization

is greatly enhanced, since there is no longer a reliance on luck of the draw for individual optimums to be

drawn on the same iteration.
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Figure 6.6: On the left is ten runs of iterative dynamic discretization using m = 10, rediscretizing one

variable per step (all 19 per total iteration with a propagation between each step), and retaining the best

value from the previous discretization. The average for these runs is shown on the right along with the

previous variation (di�ering only in that the best value was not retained) and Gibbs.

However, perhaps the most important bene�t of keeping the best con�guration is that the potential

numerical instability that can arise when simultaneously rediscretizing all variables is eliminated. The

bene�ts and e�ects of simultaneous rediscretization is examined next in Section 6.6.

The performance of iterative dynamic discretization, while keeping the best value for a variable when

that variable is rediscretized, is shown in Figure 6.6. Once again, variables are discretized one at a time,

with a propagation performed between each rediscretization.

6.6 Simultaneous Rediscretization

It is also possible to rediscretize all variables (or a selected subset of variables) simultaneously. Previously,

one variable at a time was rediscretized, and when the next variable was discretized, the sampling distribution

was conditioned on the newest discretization. When variables are discretized simultaneously, all are sampled

from distributions conditioned on the previous (total) iteration, so that the new values do not interact

between variables.

When variables are discretized one-at-a-time, a propagation is necessary every time an individual variable

is discretized. An signi�cant advantage of rediscretizing simultaneously is to eliminate propagation steps |

only one propagation is needed per total sweep through the variables. This e�ectively amortizes the cost of

performing a propagation over all the variables.

When variables are discretized simultaneously, new values are chosen using less knowledge than with one-

at-a-time discretization. For this reason, simultaneous discretization should slightly decrease convergence

rates on a per iteration basis. However, since each iteration is more e�cient, this tradeo� is often worthwhile.

One must take care to avoid numerical instabilities when rediscretizing all variables simultaneously.

Since values are selected randomly according to f , there is normally nothing to guarantee that the resulting

discretization contains a valid con�guration. In the time-series segmentation task, only segmentations with

t

i�1

< t

i

are valid (all other get an evaluation of zero), but without extra precautions, simultaneous selection

of new values for t

i�1

and t

i

could result in all new values of t

i

occuring before all new values of t

i�1

. The

same cannot happen when variables are discretized one at a time since new values are drawn from f

mbp

, a

distribution conditioned on the neighbors' current values. The easiest (and very e�ective) way of avoiding

this numerical instability is to always retain the value from the best con�guration. This guarantees that at

least one valid con�guration will always be retained. The same trick cannot be utilized with Gibbs sampling,

so simultaneous discretization is not variation that can be used with Gibbs sampling.

The impact of simultaneous discretization is seen in Figure 6.7. In this experiment, on each iteration 9

new values were simultaneously chosen for every variable (t

1

::t

19

), based on the values from the previous
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Figure 6.7: Plain iterative dynamic discretization using m = 10 and keeping the best con�guration from the

previous discretization and rediscretizing all time points at the same time.

iteration. Thus, the new values for t

1

had no in
uence on the new values for t

2

, etc. Also, the value from

the optimum con�guration was retained, so that in total, each variable had 10 possible values. After all

variables were discretized, potentials were propagated.

A slight improvement in mobility is apparent in the graph showing the individual runs (on the left of

Figure 6.7). In that graph, sudden improvements occur after an apparent plateau has already been reached.

This indicates that the system is breaking out of locally stable con�gurations and jumping to better ones. It

appears that this is happening more frequently than was the case with one-at-a-time discretization. The e�ect

here is relatively insigni�cant to the overall averages, but it is something that can be utilized advantageously

with the next variation of the algorithm. Figure 6.7 con�rms that there is a slight decrease in convergence

rate from one-at-a-time discretization in terms of iterations, but that this di�erence is insigni�cant. In the

graph, the simultaneous version eventually surpasses the one-at-a-time version. This may be due to the

increased mobility, but there are not enough runs to conclude anything beyond the observation that the

per-iteration penalty for simultaneous discretization is small. However, an experiment reported at the end

of Section 6.7 found a somewhat larger di�erence between one-at-a-time and simultaneous discretization.

6.7 Keeping Neighbors' best

The above experiments with the �rst few variants of iterative dynamic discretization highlight the importance

of mobility to convergence rates, and help to de�ne the nature of mobility (or the lack of it) in this application.

What often happens during the search is that good transition times are found, but they are assigned to the

wrong time index. These tend to be create very immobile con�gurations because a whole series of transitions

must slide over at the same time to reach an improved con�guration (i.e., introducing or removing one

additional transition between two existing transitions). This is closely related to decomposition of the

HSSMM, speci�cally the fact that the t

i

variables identify the time of the i

th

transition. For example,

whether t

8

occurs at t = 3819 depends critically on whether the obvious transition at t = 3149 is t

7

, t

6

or

otherwise.

Recognizing the nature of this source of immobility, an additional tweak to the discretization process can

be introduced to add back (some of) this lost mobility. The idea is to include the best transition times for

t

i+1

and for t

i�1

as possible transition times for t

i

. This is what is meant by \keeping neighbors' best." If

this is done for all points, then a channel is established by which all points can easily shift down by one,

allowing a single new transition to be inserted or deleted between existing transitions without great bias

against such shifts.

For example, if t

i

is to be reframed with m = 10, we �rst identify the optimum con�guration, then

extract out the values of t

i�1

, t

i

, and t

i+1

from that con�guration. These become the �rst three possible

values in the new discretization of t

i

. Next, we select 7 more values using random sampling, for a total of
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10 possible values.

If several variables shift over using the pathway created by retaining neighbors' best points in the new

discretization, this has an e�ect similar to renumbering transition times. What used to be the �fth transition

is now the sixth transition, etc.

An important bene�t of iterative dynamic discretization (as compared to Gibbs sampling, for example)

is that it is possible to set up such a channel to directly address the domain-speci�c sources of immobility.

This same solution would not be possible with Gibbs sampling. But because we have multiple possible

values in a discretization of a variable, there is the 
exibility to set some of these aside to address problems

like mobility. This seems to be one of the biggest advantages that iterative dynamic discretization has over

competing techniques.

Unlike all other variations considered in this thesis, this variant (keeping neighbors' best) is domain-

dependent. It relies on the fact that neighboring transition times are on the same scale, and a good value for

t

i

may be a good value for t

i+1

. Relationships like these generally do not exist between adjacent variables

in arbitrary graphical probabilistic networks. It is also a solution that is aimed directly at an artifact of this

speci�c problem formulation. The formulation itself has a sort of de�ciency, and this variant is designed

speci�cally to address that de�ciency. Because of this, this speci�c solution is of less general interest as

the other methods considered. However, as a case study, it serves to illustrate where important sources of

power lie (i.e., methods that carve channels of mobility through the space of con�gurations) and how these

can sometimes be enabled via discretization. From this, there are important general lessons to be learned.

Speci�cally, iterative model construction techniques must pay careful attention to barriers to mobility that

the technique or formalism introduce, and it is wise for developers of such techniques to focus on how such

barriers can be subverted.

The result of running iterative dynamic discretization while retaining the neighbors' best values is shown

in Figure 6.8. Perhaps the most important property made evident by these graphs is the consistent ability

to (rapidly) improve from the current state, which is evidenced by the sharp upswing in virtually all the

individual runs after they had plateaued at a sub-optimal evaluation. This is a telltale sign that barriers to

mobility have been removed.

Instead of simply retaining t

i+1

's best value as a possible value for t

i

, another option is to retain more

than one of a neighbors' best values. This could have added bene�t in many situations. For example,

the absence of a transition can often cause a single transition variable to do double duty. The single best

transition time may be somewhere between two attractive transitions, so that the single transition makes

somewhat of a compromise. Imagine, for example, that between the current best values for t

7

= a and t

9

= b

lie two relatively obvious transitions | and with only t

8

to cover both, the best position for t

8

is between

these two transitions. In this case, the two obvious transitions as well as their midpoint might all show up as

favorable transition times, with their midpoint being the most favorable. In this situation, what is needed

is a shift in the labeling of time points, so that two transitions occur between a and b. But if t

7

were to

shift rightward, we would want it to �nd the leftmost obvious transition, not the midpoint. In other words,

t

7

should borrow something other than its successor's best value.

Recognizing that there are many possible variations on this type of situation, it would be very di�cult

to invent a universal ad hoc rule for choosing which of the neighbors' values to keep. Instead, note that

likely transition points will often be rated highly since they often result in good data �ts, so the points rated

highly by a neighbor have a good chance of being good points for a predecessor (especially after a shift).

Thus, the easiest method is to simply keep more than one of the neighbor's best points. This cannot be

taken to an extreme, however, since ever value of a neighbor that is retained means that one less point is

available for sampling (for a given m). Consider also that if t

i+1

is indeed doing double duty, setting its

best value to somewhere between two good transition times as a compromise, then the two good transitions

are likely to have a good evaluation, and it is likely that each is on opposite sides of the best transition.

Thus, by retaining the top three of the neighbors' best points, there is a good chance of grabbing the most

promising value. This rationale suggests that bene�t may be obtained by keeping (at least) three of the

neighbors' best. On the other hand, if three values from all neighbors were retained, this could severely cut

into the possible values for t

i

(in this case, there are two neighboring time values, so only three points would

remain for random sampling with m = 10). A better compromise is to pick three points in a single direction.

This still builds in some of the same 
exibility for shifts in the other direction, but to a much lesser extent.



6.7. KEEPING NEIGHBORS' BEST 116

-25

-20

-15

-10

-5

0

5

10

15

0 20 40 60 80 100

E
va

l

Iterations

10 Runs of Iterative Dynamic Discretization

Framesize=10

All variables rediscretized simultaneously

Kept best from predecessor, self, and successor

Figure 6.8: Ten individual runs of iterative dynamic discretization using m = 10, f

mbp

weighted using sum

potentials (i.e., the regular posteriors), and including the best current value from

^

t

i�1

,

^

t

i

(i.e., own best),

and t

i+1

. (For average, see Figure 6.10.)

Since most biases present in the HSSMM formalism empirically tend to include extra transitions, it is most

natural to retain three of the successor's best times and only one of the predecessor's best times, creating

the greatest mobility for rightward shifts, and still leaving 5 values available for random sampling.

The result of retaining three of the successor's values is shown in Figure 6.9. The resulting algorithm is

highly e�ective, with 10 out of 10 runs �nding a nearly optimum segmentation (with evaluation of approxi-

mately 14.2 in all cases) in less than 60 iterations. The e�ects of mobility are evident in the individual traces,

where plateaus are rare and very short lived. The tendency for a few runs to jump directly to the optimum

right out of the starting gate is reduced slightly (compared to Figure 6.8) by the fact that the number of

values being randomly sampled for each variable is slightly reduced, causing a single discretization to cover

a little less local territory.

The experiments in Section 6.6 found that simultaneous discretization cause a slight reduction in perfor-

mance on a per-iteration basis. But that was done without retaining the neighbors' best. Is it possible that

keeping the neighbors' best might somehow interact synergistically with simultaneous rediscretization so that

in concert they function better than either does alone? An additional experiment tested this and not only

found this to not be the case, but found that the per-iteration penalty from simultaneous rediscretization

was somewhat worse than in the previous experiment. The experiment keep the predecessor's, successor's

and own (single) best point, with a total frame size of 10, but rediscretized one t

i

at a time propagating

potentials between each discretization. The result is shown in Figure 6.12. Again, a per-iteration comparison

does not fully re
ect the extra work required to propagate potentials at every iteration, so there is still some

amount of tradeo� involved. Despite this, the performance of the one-at-a-time runs in Figure 6.12 are not

quite as good as the runs obtained in Section 6.8 where simultaneous discretization is used yielding greater

e�ciency.
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Figure 6.9: Ten individual runs of iterative dynamic discretization using m = 10, f

mbp
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. All 10 runs had found the optimum before the 60
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iteration. (Average

shown in Figure 6.10.)
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Figure 6.10: Averages for the runs that retain neighbors's best values during discretization.
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Figure 6.11: This is the best segmentation found during the experiments in Section 6.7. It has an evaluation

of 14.2.
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Figure 6.12: E�ect of simultaneous rediscretization when neighbors' best are kept.
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Figure 6.13: E�ect of using alternative weighting schemes (Section 4.4.3). (a) Using max potentials, (b)

Using uniform weighting. These used m = 10, rediscretized all variables simultaneously, and retained the

best value, the predecessor's best value, and the successor's three best values.

6.8 Alternative Weighting Schemes

Two �nal variations are obtained by using alternative weighting schemes, i.e., weighting the f

mbp

mixture

by so-called max-potentials or by weighting the components of the mixture equally. These variations are

discussed in Section 4.4.3. Runs using these weighting schemes are shown in Figure 6.13. Averages are

shown in Figure 6.14.

The experiments appear to indicate that this results in a very rapid initial convergence, quicker than

with sum-potentials, but that the �nal �ne adjustments takes slightly more time. In both cases, all 10 runs

were very close to optimal within the �rst 20 iterations, but by the end of 100 iterations, many of the runs

had not closed the remaining gap.

Throughly this research, I have noticed (informally and empirically) that it seems to be a general rule

that variations can be more or less aggressive (opportunistic), and that greater opportunism generally results

in faster convergence to local optimum solutions with a greater reduction in mobility out of those local

optimums. The alternative weighting variants appear to largely violate this, displaying both a tendency to

converge very rapidly and a tendency to avoid local optimums. However, the slowness at making the �nal

adjustment may be an instance of this general tradeo�.

6.9 Frame Size

As a �nal variant considered, this subsection examines the impact of frame size (m) on the algorithm.

Intuitively, we would expect a larger frame size to speed convergence. For instance, if the frame size were

so large that the entire time scale of interest could be �nely discretized to the nearest millisecond, the

optimal con�guration would be identi�ed in the zeroth iteration. Furthermore, Gibbs sampling falls out as

the degenerate case when m = 1, and the previous experiments have already demonstrated that maintaining

multiple values (at least m = 10 values) can signi�cantly improve convergence. What is not clear is exactly

how convergence rate is impacted between the extremes.

First, even if larger frame sizes are better, they come at a signi�cant computation price. The time and

space complexity of the propagation algorithm scales as O(m

2

), so going fromm = 10 to m = 20 quadruples

the time for propagation at each iteration. Also, at this point there is no formal guarantee that larger frame

sizes monotonically improve expected performance. One potential phenomena that could (and does) thwart

monotonic improvement is discussed in the Drawbacks section of Section 4.4.1 and Figure 4.5.

The best observed performance from previous experiments seems to be from using max potentials, re-

taining a variable's best as well as its predecessor's best and its successor's three best. The experiments
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Figure 6.14: Average Performance using the various weighting schemes. (Individual runs shown in Fig-

ure 6.13).

here simply ran with these settings while varying frame size among m = 10; 15; 20; and 30. The results in

average performance are shown in Figure 6.15.

This experiment turned up two surprises. First, convergence rates actually degraded slightly with in-

creased frame sizes. It might be noted that larger frame sizes did get o� to a slightly better start on the

zeroth con�guration (m = 30 started out with a zeroth interaction evaluation about 6 points higher than for

m = 10), but just did not converge as rapidly. The phenomena of Figure 4.5 is to blame for this (discussed

in Section 6.11.3). A good solution to this problem remains open.

The fact that larger m can decrease performance is both counter-intuitive and disturbing. The problem

is discussed in detail on Page 86 and some further discussion is given in Section 6.11.3. Basically, it is caused

by an interaction between consecutive iterations that causes the weighting of what appears promising to

become distorted (roughly by counting the weighting twice). The weighting coe�cients (max weighting in

this case) are used to identify how promising discrete values for neighboring variables are. However, on

the previous iteration, those values were selected based on how promising they looked at that time, so the

spacing of those values also indirectly encodes the degree of promise. This has the e�ect of amplifying the

attractiveness of those values already believed to be promising, and therefore decreases mobility despite the

larger frame size.

This phenomena seems to indicate that a problem exists in the method by which f(x) is estimated.

The uniform weighting scheme would seem to eliminate this problem by relying only on the spacing of

values for weighting. This is more-or-less con�rmed by the experiment shown in Figure 6.16, in which the

previous experiment was repeated using uniform weighting. The overall tendency in that graph is a slight

improvement in performance with increasing m.

Although uniform weighting does seem to get around the double counting of importance that causes

the decrease in performance with max potentials, it is not a perfect solution. Uniform weighting sacri�ces

the ability to quickly recognize a stray value that happens to stumble on very promising new value. The

potentials can signal a highly promising value, even if it is a stray, while the uniform weighting scheme gives

such a point only the same weight as every other point, decreasing the recognition of unexpected discoveries

with larger frame sizes. This potentially hinders the algorithm's ability to explore. This leads me to believe
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Figure 6.17: Best segmentation found during all experiments. It may be the optimal segmentation for this

problem. It has an evaluation of 14:7.

that improvements on the method for estimating f could be made, even over the uniform weighting scheme.

An improved method should somehow continue to use the computed weighting potentials while at the same

time compensating somehow for the spacing of existing discrete values. To date, a reasonable method for

accomplishing this has not been identi�ed, so this challenge remains an important topic for future research.

A second surprise from the frame size experiments was the optimum segmentation found. The best

segmentation found during all the experiments reported in the previous sections had an evaluation of 14.2.

It agreed with the ground truth parse on the times of all transitions, but di�ered on the states at some of

those transitions. Furthermore, it was consistently identi�ed by the m = 10 algorithm. However, at least

one of the runs for each of the larger frame sizes located an even better parse with an evaluation of almost

14.7 shown in Figure 6.17. Although the di�erence in evaluation is fairly small, I �nd it a little disturbing

that the m = 10 variant consistently converged to the segmentation in Figure 6.11 without ever stumbling

across the superior parse in Figure 6.17. Because of the many runs that had consistently found the same

parse, I felt reasonably con�dent that Figure 6.11 was indeed optimal, until this set of experiments proved

this not to be the case.

How is it that the true optimal could be consistently missed by so many runs, yet found several times

by the runs with frame sizes greater than 10? This is an indication that the true optimum is very sharp,

with nearby con�gurations being sub-optimal. Larger frame sizes are able to explore multiple possibilities

at the same time, and are thus better able than small frame sizes are to stumble across local optimum with

very small basins of attraction. The experiments suggest that this ability to e�ectively carry out multiple

simultaneous searches is tremendously ampli�ed by larger frame sizes.
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6.10 Shuttle Data

This section brie
y explores the performance of the iterative dynamic discretization algorithm on a time-

series that was generated during a 
ight of the Space Shuttle. This time-series appeared in Chapter 2 on

Page 28.

There are a couple reasons for including this experiment. First, it demonstrates the algorithm running

on actual data produced by a real-world process. Second, it adds a second time-series to the experiments

reported here (Chapter 7 adds a few additional permutations as well). Third, unlike the previous experiments,

in the runs of this section I do not provide the algorithm with the time of the n

th

transition. There were

good reasons for providing the time of the 20

th

transition in the previous experiments, e.g., to control for

varying amounts of data coverage when comparing variants so that comparisons are meaningful. However,

since such comparisons are not the focus here, and since an observation of that form would not normally

be available in a time-series application, it is more interesting to run the experiments without the extra

observation.

There is one very large de�ciency in using non-synthetic data: we do not know the model that actually

generated the data. This leaves open a very large degree of freedom, i.e., the speci�cation of the model.

This could, by itself, virtually determine the outcome of the experiment(s). As it is, the model must be

subjectively assessed, and depending on what model is written down, very di�erent outcomes could result.

One way (partially) around this would be to learn the models from data, in which case an experiment like the

one here would test both the learning algorithm's performance as well as the inference engine's performance.

However, automatic learning of the models is beyond the scope of this thesis, and so a subjective assessment

is necessary here. The model used here is listed in Appendix B. To obtain this model, I �rst read the

description of the Shuttle's APU (

[

NSTS, 1988

]

) and gained an reasonable understanding of how the APU

system functions. I then examined the time series for these two sensors over three di�erent shuttle missions,

and very quickly wrote down a description in the form of an HSSMM for what I believed I was seeing. In

doing so, I made very crude estimates of the mean and standard deviations for transitions and for the \noise

levels" on signal shapes, with a slight bias for over estimating uncertainty (to account for the imprecision of

my estimates). Very little e�ort was spent on specifying the model, and the model was not re�ned further

after any runs were performed. By its very nature of being a subjectively estimated model, the precise

model used is inherently open to criticism; however, due to the lack of e�ort placed on obtaining the model,

this criticism is somewhat minimized. A claim that the model has been designed speci�cally in a way that

results in the desired performance would be unfounded. I believe the runs here are very representative of

performance of the algorithm with reasonable models on this time series.

Figure 6.18 shows the rate of convergence for ten runs of the algorithm. For these runs, the estimation

step used f

mbp

with max potentials and a discretization frame size of ten was used. Discretization kept

the predecessor's and own best values and three of the successor's best values, then picked the remaining

�ve values in each frame using random sampling. Initially, the chain was grown to length ten (i.e., ten

transitions). As before, the segmentation quality is measured using a log Bayes factor relative to a a parse I

identi�ed by hand. Since the data is non-synthetic, this simply serves the role of the ground truth parse and

scales the segmentation quality numbers into a nice range. Figure 6.18 shows that in less than 15 iterations,

all ten runs of the algorithm converge, with seven of the ten reaching almost total convergence in only three

iterations. This is a pretty clear indication that this particular problem is considerably easier than the

synthetic problem of the previous sections.

The �nal parse identi�ed by these runs is shown in Figure 6.19. A few of the transition times appear to

be slightly o� from the obvious in
ection points (e.g., at t

3

= 12441). This occurs because the signal shapes

are modeled (Appendix B) as linear, while the actual shape is not linear. When these non-linear shapes

are replaced by their best-�t lines, the transition times discovered by the algorithm result. Other than this

slight discrepancy, the parse that was very reliably found is the segmentation we expect.

6.11 Phenomena and Artifacts

This section describes some of the phenomena that arises as a result of using a discretized model during

the iterative model construction process. The insights in this section come from my experience examining
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(a)
(b)

Figure 6.20: Misaligned transition. The top panels show time series data and the best segmentation from

those contained in the discrete model. The lower panels show the possible discrete values for t

3

and t

4

.

Because the discretization for t

4

(right) does not include the fourth in
ection point in the data, t

3

(right)

does not prefer the third in
ection point in the data.

and debugging individual situations that have been observed to repeatedly occur when using the algorithm.

Understanding these \artifacts" can be quite useful for making e�ective use of these and related methods,

as well as for improving on the algorithm in the future. In addition, lessons from artifacts in this domain

may transfer to other KBMC endeavors.

6.11.1 Misaligned Discrete Values

Many artifacts of discretization are an indirect result of a poor selection of possible values for some variable.

If the best transition time is not included in the discretization for t

i

, all other transition variables may be

a�ected.

In Figure 6.20(b), the discretization for t

4

(appearing in the lower panel) does not include t = 1086, the

time of the fourth transition in the data. Notice that the discretization for t

3

(lower panel of Figure 6.20(a))

does contain the time of the third transition; however, because of the \misalignment" in the discretization

of t

4

, the optimum value for t

3

is found to be something other than the actual time of the third transition.

In this example, t

3

= 1022 (between the third and fourth transitions in the data) results in a better

segmentation than t

3

= 940 (the time of the third transition) given that t

4

can only be one of the �ve values

in its current discretization. t

3

= 940 would produce a better data �t from t

2

to t

3

, but would produce a

much worse data �t between t

3

and t

4

.

In some cases, this same problem can impact t

3

a second time if t

3

is rediscretized. Since t

3

� 1022 appears

to be the most attractive value, a rediscretization of t

3

may cluster the new values around 1022, potentially

eliminating t

3

= 940, the actual time of the third transition, from consideration (on that iteration). This, in

turn, reinforces the belief that t

4

= 1574 (rather than t

4

= 1086, the actual time of the fourth transition),

since t

4

= 1574 may indeed be optimal when t

3

= 1022. This result is that a bad framing can mislead

the interpretation and a bad interpretation can mislead a discretization, quickly creating a locally stable

(immobile) sub-optimal con�guration.

Since this phenomena would seem to be inherent to the use of discretizations, methods (domain-dependent

or otherwise) for increasing mobility are important for dealing with this artifact.

6.11.2 Growth Biases

Section 4.5 describes how a propagation graph is initially grown. During the initial growth phase, there is a

tendency to insert more transitions than necessary (i.e., to space the transitions too closely together). There

are several phenomena that create this bias, some of which are discussed in this section.
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Figure 6.21: Two consecutive longer-than-average transitions. Bottom panel shows possible discrete times

for t

1

, with height of bar indicating discrete posterior probability for t

1

when t

1

is the horizon.

Limited Horizon

When a length-4 segmentation is evaluated, the evaluation criteria (Equation 2.3 on Page 35) includes the

data �t from t

0

to t

4

, but does not consider the state or data �t following t

4

. The last transition time, t

4

,

serves as a horizon.

Times occuring before the \real" transition are often attractive values for the horizon variable. This is

because there is a good data �t between t

i�1

and t

i

regardless of whether or not the shape changes at t

i

. A

change in the shape normally gets detected as a result of there being a good �t on either side of a proposed

transition time (e.g., see Two-Window methods, Section 2.4.1, Page 40); however, the data �t for a horizon

point only gets evaluated on one side.

Suppose two consecutive longer-than-average segments occur in the raw data (Figure 6.21). Even though

a good initial framing is chosen for t

1

(i.e., one containing something close to t

�

1

= 824 as a possible value),

the mode of t

1

's waiting-time distribution

8

| and not the value corresponding to the transition | appears

most attractive. The data �t is virtually constant for all values before the transition in the data, so the

potentials are almost exclusively determined by the waiting-time distributions.

When t

2

is added to the propagation graph, the mode-centered weighting of t

1

causes t

2

's sampling

distribution to be centered considerably earlier than where the actual transition for t

2

occurs (Figure 6.22).

The result in this example is that t

2

gets assigned to the �rst transition in the data. In contrast, Figure 6.23

shows the discretization for t

2

that results when the precise time for t

1

is known with certainty. In this

later case, the limited horizon e�ect does not in
uence t

2

's discretization, and so the discretization is placed

pretty much ideally.

Whenever a longer-than-expected transition occurs in the raw data, the limited-horizon bias kicks in,

and since this does not occur in the opposite direction when quick transitions occur, the bias systematically

causes extra transitions to be inserted during the growth stage.

Misaligned Values

When the problem of Section 6.11.1 occurs on the horizon of the propagation graph during the growth stage,

an extra transition often gets inserted. This creates yet another bias for inserting too many transitions

during the growing stage. To see why this occurs, consider Figure 6.24.

8

It is actually the mode of the mixture of t

1

's waiting-time distributions, where the mixture is weighted according to the

initial state probabilities.
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Figure 6.22: Impact of Limited Horizon on t

2

's discretization.

Figure 6.23: (Ideal) Placement of t

2

's discretization, obtained when time of t

1

is known with certainty.
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t*

Figure 6.24: Misaligned discretizations on the horizon often results in an extra transition. Dashed vertical

lines indicate discretization for t

1

(m = 3).

In Figure 6.24, t

1

has three possible values, but none of these values are perfectly aligned with the

obvious transition (t

�

) in the data. When a second transition is added, there are three choices for possible

segmentations:

1. Both transitions occur after t

�

, i.e., t

�

< t

1

< t

2

.

2. One transition occurs on each side of t

�

, i.e., t

1

< t

�

< t

2

.

3. Both transitions occur before t

�

, i.e., t

1

< t

2

< t

�

.

In the �rst two cases, the best �t line must cut across both segments in the data, resulting in a poor data

�t in either case. However, in the third case, the best �t line from t

0

to t

1

, and the best �t line from t

1

to

t

2

both coincide with the straight line in the data (from t

0

to t

�

). Thus, in the third case, the data �t is

very good. Note that this assumes the model allows for two consecutive rising segments. The same would

not occur in a model with deterministic transitions in which a rising segment is always followed by a falling

segment.

If the value t

�

were included in the discretization of t

1

, a very good data �t would occur with t

2

> t

�

.

Since the third case gets penalized somewhat by the waiting-time expectations, this would be the optimum

con�guration. However, due to the misalignment of the discretization for t

1

, i.e., the fact that t

�

is not a

value in that discretization, the penalization from expectations may be less penalty than the bad data �t

resulting from either of the �rst two cases.

Once again, this artifact of discretization creates a bias during the growth stage towards more rapid

transitions.

Right Skewness

Waiting-time distributions are typically skewed to the right | i.e., with mode < mean. The reason for this

is that the distributions cannot extend into �t < 0, but usually do have a tail to the right. For example,

any gamma distribution with � > 1 is right skewed.

The result of right-skewness is that the majority of transitions last longer than the most likely duration.

Thus, the maximum likelihood estimate of duration is in most cases an underestimate of the actual duration.

Max-potential weighting tends to center the discretization of a new stage at the expected distance from

the mode of the previous horizon. Since the max-potential identi�es the most likely transition time, there

is an immediate bias towards short transitions. For other weighting schemes, right skewness interacts with

the limited horizon e�ect to amplify the bias towards quicker transitions.
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Local Stability of Grown Graph

The above biases that occur during the growing stage would not be problematic if iterative discretization

could quickly correct the previous mistakes. However, all of these phenomena tend to identify locally stable

initial discretizations. Once a bad choice is made during one step of the growing stage, stages added

subsequently base their discretization on the previous bad choice. These make the bad decision look good

locally since it �ts well with the frames that follow. This tends to make the initial discretization locally

stable and therefore di�cult to improve upon using local or greedy optimization schemes. This makes the

issues of mobility even more important.

Finally, it should be noted that all of the growth biases are ameliorated somewhat by using a uniform

weighting scheme (see Section 4.4.3) for the horizon. Since the weighting communicates several of these

artifacts to the discretization process for the added stage, ignoring weights altogether during growth helps

to eliminate partially some of the biases.

6.11.3 Discretization Density

One undesirable artifact (which has already been discussed in Section 4.4.1 on Page 86, but is worth men-

tioning again) becomes quite signi�cant when larger frame sizes are used with a non-uniform weighting

scheme. The spacing of discrete values from the previous iteration can have a signi�cant e�ect on the re-

sulting estimate f(x), particularly when m is large. In fact, this phenomena appears to be responsible for

the decreased performance found in Section 6.9 when m is increased. The reader is referred to Page 86 for

a full description of the phenomena, and to Section 6.9 for further discussion of its impact.

Loosing speaking, what happens is that the density of discrete points in the previous iteration indirectly

re
ects how promising possible values appeared during that previous iteration. The weighting coe�cients

(from the potentials) are then also introduced to determine importance. The two are somewhat redundant,

and the resulting estimate becomes distorted as a result.

It was found in Section 6.9 that the uniform weighting scheme pretty much eliminates this artifact. On

the other hand, (intuitively) the uniform weighting scheme would seem to ignore information that should be

valuable. This presents somewhat of a dilemma. When we try to use weighting information intelligently, the

discretization density artifact tends to create problems as m grows. This may be an aspect of the algorithm

where future improvements in the estimation procedure may be possible with performance impact.

6.11.4 Local Stability

Throughout the previous sections, the issues of mobility and local stability (or immobility) are mentioned

repeatedly. Because I have observed this phenomena to be such an important determiner of the success of

iterative discretization algorithms, it deserves to be singled out and emphasized as an important phenomena.

Often discrete models are produced by the algorithm with the property that a rediscretization of any

single variable will not result in an improved solution. Often it takes a simultaneous shift in several variables

(often with each individual variable's required shift being somewhat unlikely to occur via random sampling)

to yield an improved solution. It is in this sense that we say discretizations may be locally stable. This is a

form (the predominate form) of immobility.

Many of the other artifacts discussed above are signi�cant precisely because they tend to produce dis-

cretizations that are locally stable. In most of the cases, one of the above artifacts causes a preliminary

commitment of some kind to be made. Choices later are made based on that commitment. Soon, even if the

original choice was selected poorly, the subsequent choices arti�cially reinforce the commitment, making it

locally stable since the subsequent choices all appear most appropriate for that original selection.

This phenomena makes locally stable discretizations very common. It makes it incredibly important to

insert methods for increasing mobility (or decreasing local stability). This is why the technique of \keeping

the neighbors' best" (Section 6.7) is so e�ective. It allows the algorithm to easily slide between what would

otherwise be locally stable con�gurations.

The fact that the phenomena of local stability is so common is perhaps one of the most important

lessons that this case study has for other iterative endeavors, including iterative KBMC methods. Solutions
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for ameliorating this phenomena are likely to be varied and often domain-dependent, but it is extremely

important to be prepared to address this problem from the outset of one's project.

6.12 Conclusions

This chapter explores the the empirical performance of iterative dynamic discretization and reveals a number

of general lessons for related lines (or potential lines) of research.

Experiments demonstrate that the iterative dynamic discretization algorithm has signi�cant potential to

drastically decrease the number of iterations required as compared to Gibbs sampling.

A more careful examination of where this power comes from revealed a number of insights that are

generally useful for any iterative model construction attempt. Foremost is that mobility (or lack of it) is

a primary determiner of convergence rates. Mobility is essentially the ability to move from one qualitative

class of solutions to another. This is, of course, well-recognized in the Markov chain Monte Carlo literature

[

MCMC, 1996

]

, but before this chapter, the similar connection to model construction was anything but

obvious. However, this case study has demonstrated that once the underlying reasons for mobility are

identi�ed, domain-speci�c methods for by-passing barriers to mobility can often be introduced. This was

possible here (and not possible with Gibbs sampling, for example) due to the 
exibility enabled by iterative

dynamic discretization | in particular, because there are multiple possible values for each variable, there is

room to use some of these to implement domain-speci�c channels to enhance mobility.

The iterative dynamic discretization algorithm is, so far, an algorithmdeveloped and explored empirically.

Although some theoretical aspects were considered brie
y in Chapter 5, these say very little about the e�cacy

of the algorithm. The potential bene�t of the approach has been demonstrated, but the algorithm remains

ripe for future improvement and analysis.



Chapter 7

Time-Series Modeling Issues

The previous chapters present a formalism (the HSSMM) and algorithm for model-based time-series seg-

mentation. What if a good model of the time series is not available? Does this mean the approach is useless?

Or does the algorithm �nd reasonable segmentations even when the model is not very good or even slightly

incorrect? How informative is a model of a time-series? Is the really important segmentation information

mostly in the model or is it in the time-series data itself? How general is the HSSMM formalism? Are there

important examples of time series that cannot be faithfully modeled by a HSSMM? Can a time-series model

be learned form data? How? When would it be a good idea to do so? These are all examples of important

issues that arise for any model-based time-series segmentation approach. They are all questions aimed at the

modeling formalism rather than at the inference algorithms that use the knowledge and perform the search.

This chapter brie
y touches these issues. A thorough understanding of any one of these issues could form

the basis of a thesis by itself, and consequently the discussion here is anything but complete. Nevertheless,

it is still instructive to review these issues however brie
y.

One common characteristic of Bayesian-style probabilistic models is that they support a range of knowl-

edge from ignorance to informedness. In a model-based time-series segmentation task, this creates the


exibility to control the degree to which the segmentation process is driven by the data or driven by the

model. This continuum is the primary topic of Section 7.1. Experiments in that section help to provide a

very limited understanding of the robustness of the HSSMM formalism.

Section 7.2 discusses some important limitations of the HSSMM. The HSSMM utilizes a semi-Markov

model. There are at least three common cases arising in practice that are not semi-Markov, and as a result,

there is useful knowledge that cannot be captured within a HSSMM. Section 7.2.1 generalizes the HSSMM

to the HSGSMM, based on a generalized semi-Markov model. The extension covers the interesting non-

semi-Markov cases, but I do not study the HSGSMM further in this thesis. The discussion is intended to

introduce a potentially useful time-series knowledge representation formalism that may be of interest in the

future.

Finally, in Section 7.3, I provide some (unsatisfactorily brief) comments about the prospect of learning

HSSMMs from raw time-series data. During the course of this research I have not attempted to develop or

study learning algorithms for HSSMMs, and the ability to do so is in no way a prerequisite for the applicability

of the methods in this thesis. Model learning is, nevertheless, an obvious issue that is frequently brought up

during discussions of this work, and therefore is worthy of some discussion here.

7.1 The Model-Directed to Data-Directed Continuum

Examining historical stock market data over the past ten years (Figure 7.1), when did the S&P 500 last

change from bear to bull? This time-series segmentation task is perhaps best analyzed in a very data-directed

fashion | i.e., the raw time-series data, and not prior expectations, should dominate the determination of

when the transition occurs.

It would be unusual for two consecutive heart beats to be separated by less then 300 milliseconds or by

more than 2 seconds. In an ECG application, it is conceivable that a signal or signal to noise ratio may

131
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Figure 7.1: The S & P 500 over the past 10 years.

become weak (e.g., from a poor sensor contact, insu�cient ampli�er gain, exogenous noise, etc.), in which

case a segmentation system may still be required to identify transitions in the very weak signal. To do

so e�ectively, it is wise to make good use of prior expectations. In this case, a model-based segmentation

approach is warranted.

There is a continuum from data-based to model-based approaches to segmentation, distinguished essen-

tially by the strength of prior expectations applied to the segmentation task. Weaker expectations result in

a greater reliance on data. Consequently, this can also introduce a greater susceptibility to noise in the data.

Stronger expectations create a greater reliance on prior knowledge, and hence, a greater chance of missing

the unexpected. Between very strong and very weak expectations, there is a continuous range of possible

balances between model- and data-based approaches.

This thesis describes a model-based time-series segmentation algorithm, and some readers may have the

initial reaction that a model-based approach is inappropriate for their application because they have little

predictive knowledge; however, a nice attribute of some model-based approaches (e.g., the one in this thesis

1

)

is that it allows the user to traverse the data-to-model based continuum as needed.

In the HSSMM, strong expectations may exist in the form of low variance waiting-time distributions, low

entropy transition probabilities, or highly-selective shape recognizers. It is possible to make an algorithm

more data directed by increasing waiting-time distribution variances or transition entropies, or by decreasing

the dynamic range of shape recognizer outputs.

It is of general interest to characterize the robustness of speci�c time-series models to possible alterations

in information content. Models, almost by de�nition, are never exact, and so it is pragmatically important

to recognize when a model inaccuracy will break a system, when excess ignorance will cause important tran-

sitions to pass unrecognized, or when excessively strong expectations may cause critical unexpected events

to be ignored. While these are important considerations, they are also extremely di�cult to characterize in

a useful and general way.

One approach to studying robustness properties of the HSSMM formalism is to examine how the optimum

parse of a �xed time series changes as various parameters of the model are altered to create stronger or weaker

1

Generally, this is true of modeling formalisms that support the representation and manipulation of explicit degrees of

ignorance, as is the case with probabilistic models.
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Figure 7.2: Waiting-time distributions for experiments. New models were obtained by varying the stan-

dard deviation of waiting-time distributions while keeping the same mode. A �fth model used a uniform

distribution.

expectations. Some experiments along these lines follow.

7.1.1 Di�use Waiting-Time Distributions

This section examines the e�ect that changing the variance of waiting-time distributions has on the optimal

parse. First, a synthetic time series was generated. Here, I use the same time series used for the experiments

in Chapter 6, which was generated from the model in Appendix A. A series of altered HSSMMs were

then obtained by replacing the waiting-time distributions in the original model with various distributions.

The objective is to compare how the optimum segmentation relative to the altered models di�ers from the

optimum segmentation relative to the original model. This comparison gives an indication of how robust

the optimum segmentation is to ignorance or over-speci�cation in the waiting-time distributions.

As with the experiments in Chapter 6, I compared the optimum segmentations given the data and

given t

20

. This eliminates a number of troublesome phenomena that could cause some variations to be

incomparable. However, one pragmatic problem exists: what is the optimum segmentation relative to these

alternative models? Since an omnipotent oracle was not available for consultation, I used the iterative

dynamic discretization algorithm| the most reliable variant from Chapter 6 | to search for the optimum.

In each case, I ran at least ten trials each for at least 100 total iterations each and reported the best

segmentation found during those runs. In some cases, I ran the algorithm considerably longer and for more

runs until I was convinced that the resulting segmentation probably was the optimal one. Obviously, trust

must be placed in the performance of the search algorithm, i.e., that it �nds a nearly optimal segmentation;

nevertheless, all the segmentations shown are considerably better (with respect to the corresponding altered

model) than the optimal parse relative to the unaltered model.

In the original model (Appendix A), the waiting-time distributions are gamma distributions. Four

alternative models were obtained by replacing these with gamma distributions having a standard deviation

of 1=3, 1=2, twice, and triple the original standard deviation while keeping the mode of the distribution the

same. Keeping the mode the same means that the optimum segmentation given no data is not changed. A

�fth alteration was obtained by replacing the gamma waiting-time distributions with a uniform distribution

over [0; 3 �mean-of-original]. These �ve variations on waiting-time distributions are shown in Figure 7.2.

In cases (a) and (b) of Figure 7.3, the standard deviations of waiting-time distributions are reduced,

resulting in stronger expectations, and therefore less reliance on the data. The expectations are strongest

in (a). Many transitions are placed at points other than the in
ection points in the data. This is because

doing so results in durations much closer to the expected duration, and because of the reduced waiting-time

variance, this becomes more important than getting a good �t on the data.

In cases (c) and (d) of Figure 7.3, the standard deviations of waiting-time distributions are increased,

resulting in weaker expectations about transition times. In (d) the expectations are weakest. In these cases,
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Figure 7.3: Optimal Parses for Altered Waiting-Time Distributions. (a)-(d) are for models where waiting-

time distributions are replaced by gamma distributions with the same mode as the original, but with a

standard deviation of (a) 1=3, (b) 1=2, (c) twice, and (d) three times the original standard deviation. (e) is

for uniform waiting-time distributions.
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small amounts of noise in the data have signi�cant impact and are responsible for the more counter-intuitive

transition times identi�ed and omitted. There are two \tricks" that improve the �t when the expectations

are weaker | a very short transitions can be placed over a few noisy data points to get a very good �t (since

there is only a few data points to �t). A long transition can be placed over a long segment of hard-to-�t

data, with a fairly poor �t, but with only a one-time penalty, leaving more transitions for short, nearly

perfect �ts. So, for example, instead of having 5 okay �ts over a segment of data, it can instead use 1 long

poor �t and 4 short great �ts. As expectations become weaker, or as noise in the data increases, these tricks

become more and more pro�table.

Finally, Figure 7.3(e) is also a form of very weak expectations on waiting-time, and is in many ways

comparable to (d). However, the expectations are of a slightly di�erent form, coming from a uniform

distribution, and the evaluation is perfectly happy using virtually instantaneous transitions to obtain perfect

data �ts. Because of the limited extent of the uniformdistribution, it is not able to clump all the data between

3149 and 5269 into a single transition as was done by (d). In this way, the expectations for (e) are both

stronger and weaker than those of (d), and so a slightly di�erent segmentation results.

Shown on the bottom right of Figure 7.3 are the relative evaluations of the optimal parses for each

model. These are the evaluations given by (6.1), except that the optimal parse for the original model is

used in place of �

�

, and the evaluation is done with respect to the altered model. These numbers give an

additional indication of how robust the models are to changes in expectations. For example, even though

model (d), the one where waiting-time variances were multiplied by 9, the optimal parse for the original

model is still rated favorably by the altered model, di�ering only by a factor of e

0:9

. This is an indication

that the model is reasonably robust to increases in waiting-time variances. On the other hand, the numbers

indicate substantial changes to the evaluation for decreases in variance, indicating that it is far less robust

to underestimates of waiting-time variances. There is one small anomaly in this table: the evaluation for

(d) is less than for (c), even though (d) di�ers more from the original model than (c). Although not a proof,

this is a plausible indication that the segmentation found for (d) might not be the optimal one.

7.1.2 Transition Probabilities

To examine the robustness to ignorance in transition probabilities, the transition probabilities of the model

in Appendix A were all replaced with equal probability transitions (maximal ignorance). Iterative dynamic

discretization was then run (m = 10 with max potentials, retaining predecessor's best, own best, and

successor's three best) 10 times for 100 iterations. Eight of the 10 runs found the same segmentation (the

remaining two found something only slightly inferior), shown in Figure 7.4 and scoring 2.4 above the best

known parse for the original model (from Figure 6.17). The impact of ignorance in transition probabilities

seems to be fairly small.

The opposite of excess ignorance is to have overly strong expectations about transitions. The impact

of overly strong expectations about transitions is rather predictable and is shown in Figure 7.5. In this

experiment, the transition probabilities in the model in Appendix A were altered such that each 0:1 prob-

ability was changed to a 0:05 and each 0:4 probability was changed to 0:45. The data was generated so

that 0.8 of the transitions cause an inversion in the sign of the slope, however the model used to parse the

data in the experiment assumes that 0.9 of the transitions should result in slope inversion. In addition, the

uniform distribution on initial states was changed to b

shortRise

= 0:1, b

shortFall

= 0:2, b

longRise

= 0:3, and

b

longFall

= 0:4. This essentially introduced expectations counter to what actually appears in the data; how-

ever, this change to initial distribution seems to have had absolutely no in
uence on the optimal transition.

Thus, it is more highly biased to �nd transition points where the slope changes sign. This is exactly what

happens in Figure 7.5.

7.1.3 Noisy Data

In this section experiments examine the e�ect of noisy data on the segmentation. Noise in the data is one

aspect, another essentially equivalent concern is the e�ect of the strength of model's expectations about

noise in the data. Overly weak expectations (i.e., the expectation that noise levels are greater than they

really are) may reduce the power of the model, while overly strong expectations (i.e., the expectation that

the data is cleaner than it really is) may cause a segmentation to be mislead by noise.
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Figure 7.4: E�ect of ignorance in transition probabilities.
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Figure 7.5: E�ect of overly strong expectations about transition probabilities.
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Figure 7.6: A time-series with ground truth transition times shown.

I examined these relationships by generating a new time-series using essentially the same model appearing

in Appendix A, except for the modi�cation that the noise levels on the sensor shapes were changed to a

noise level of 3.0 (from 2.0) for LINEAR RISE and LINEAR FALL. The di�erence in signal-to-noise is noticeable

in the resulting time-series, shown in Figure 7.6. Figure 7.6 also shows the ground truth segmentation used

to generate the data shown.

The data in Figure 7.6 was segmented using four di�erent models, each di�ering only on the noise level for

the shape recognizers. The models used noise levels of (a) 2:0, (b) 3:0, (c) 6:0, and (d) 12:0. The resulting

segmentations are shown in Figure 7.7. Each of these segmentations were obtained by running iterative

dynamic discretization with a frame size of 10, max potentials, keeping the predecessor's and own best and

successor's three best points, and rediscretizing simultaneously. Each experiment was repeated 10 times,

and in all four cases all ten runs found approximately the same quality result. The best segmentation of the

ten runs is shown in each case. In all cases, the segmentation shown evaluates considerably higher than the

ground truth parse, the relative evaluations being: (a) 40.3, (b) 22.1, (c) 15.7, and (d) 14.5.

The result in Figure 7.7 (and the author's own experience with other examples) suggests that the resulting

segmentation is quite robust to weakenings in expectations of noise levels, and is also very robust to noise

provided that expectations are correspondingly weakened. For example, the segmentations in Figures 7.7(b-

d) are all quite similar to the ground truth segmentation. The HSSMM is less robust to expectations that

the data is cleaner than it actually is. This is demonstrated by the clustering of transitions around 1600 and

the lumping of several transitions between 1700 and 2700 into a single segment in Figure 7.7(a).

7.1.4 Comments on Robustness

The above controlled experiments give some insight into the robustness of the HSSMM to various possible

alterations in the model; however, some less formal comments may be even more informative. During the

course of this research, I have have hand constructed several models for various time series, some arti�cial,

some from real-world data sources. This has given me some hands-on experience, some feeling about how

di�cult it is to design an HSSMM for an application, and some idea of which parts of the model have the

greatest sensitivity.

First, it seems to be far too simplistic to say that the HSSMM is, or is not, robust to imprecision in

the parameters, or that it is highly sensitive to selected components of the model but not to others. My

experience has been that the di�culty in designing a model is not in getting any single component right,
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Figure 7.7: E�ect of noise vs. expectations about noise on segmentation.
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but instead the di�culty is in balancing the various components.

Each of the components | transition probabilities, waiting-time distributions, shape-recognizer noise

tolerances, etc. | have a certain strength of expectation. The biggest problem seems to be in getting

the balance of these expectations right. When the waiting-time expectations are weaker than the shape-

recognizer expectations, then one ends up with something overly data-directed. This can happen even when

both expectations are too strong or both are too weak. The thing that makes �nding a satisfactory balance

di�cult is that there is no direct comparison between the expectations in each component. How does the

noise tolerance of a shape recognizer relate to the standard deviation of a waiting-time distribution? This

does not seem to be something that has a single application-independent answer.

In general, I did not �nd the task of achieving a satisfactory balance to be trivial. It was typical for me to

guess at a model, then run the algorithm and notice either data-driven or model-driven e�ects dominating

beyond what I felt was reasonable. I would then have to go back and adjust the parameters and run it

again. I found that I typically had to repeat the process two or three times to get it to where I felt it was

satisfactory. As a result, I do not make the claim that the HSSMM is highly robust to inaccuracies in model

parameters. I cannot make the claim that by simply eye-balling available data and writing down reasonable

guesses for the parameters that you will automatically get good results from the segmentation algorithm.

Again, precise values for any single component do not seem particularly important, but getting the balance

between components right so that the relative importance of data �t versus model expectations is reasonable

is critical. This is, of course, a generalization, and in certain extreme cases may not be entirely true.

I did experiment with some Shuttle data in which the transition probabilities (for available data) was

entirely deterministic. For example, certain time series oscillated between rising and falling. During some

initial development and debugging of the algorithms, I used a deterministic transition model. This is the

ultimate in expectations for that component. In this case, I found the results of the algorithm to be incredibly

insensitive to variations in waiting-time distributions and shape recognizer noise variances. It seemed like

the algorithm locked onto the perfect segmentation immediately for practically any reasonable model I gave

to it (as long as I did not give it extreme (incorrect) models). I added extreme amounts of noise the data,

used very di�use waiting-time distributions, and still got good results, even with some of the weaker variants

of the algorithm. In this case, the model seems to be highly robust, but at the same time, the segmentation

task seems to be immensely easier. In fact, I found I could not use these examples for experimentation

because it was very di�cult to separate out the good techniques from the poor ones.

This example may generalize. It may very well be that when very extreme expectations in one component

are warranted by an application, it may be that the sensitivity to precise values in other components is

reduced. This is only a conjecture, but it does make some sense. For example, if durations were deterministic,

it would only be a matter of comparing shapes and noise levels between known points in time to transition

probabilities. In this case, the balance between transition probabilities and shape-recognizer noise levels is

probably much less critical.

7.2 Limitations of the HSSMM

The HSSMM places little restriction on the form of shape recognizers or on the form of waiting-time distribu-

tions. As a result, the basic framework is quite general in many respects. However, there are several types of

transition processes that cannot be faithfully modeled by a pure HSSMM. These typically arise because the

transition process of interest is not semi-Markov. This section discusses some of the important limitations

that arise in actual data that I have seen and introduces the Hidden Segmented Generalized Semi-Markov

Model (HSGSMM), a generalization of the HSSMM, to describe these transition processes. This thesis does

not explore the HSGSMM in any depth | it is discussed here solely as a lead to possible future research.

There are some obvious limitations of the HSSMM that I do not focus on here. For example, the

HSSMM is clearly not appropriate as a model for slowly and continuously changing nonstationarity processes.

Instead, the HSSMM is appropriate for systems with distinct transition points with a small number of

distinct operating modes. Conceivably the number of reasonable operating modes could be extended by

harnessing structure within the state space using the structural decomposition techniques of Chapter 3.

Similar methods have been applied to Temporal Bayesian Networks (e.g.,

[

Agogino and Ramamurthi, 1990,

Kanazawa and Dean, 1989, Berzuini et al., 1989, Kjaerul�, 1995a

]

), but this direction is not considered
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Figure 7.8: A hierarchical process.

further here.

I concentrate here on processes that are not semi-Markov. Recall that a semi-Markov process has

the property that at the instant immediately following a transition, the current state always summarizes

everything there is to know about the future evolution of the system. It is semi-Markov and not Markov,

because this property need not hold at every point in time. Three important cases of non-semi-Markov

processes occur commonly in practice.

Hierarchical Signal Shapes

Figure 7.8 shows the turbine speed as a function of time during a simulation of an auxiliary power unit based

on an on-line description of the Space Shuttle's auxiliary power unit

[

NSTS, 1988

]

. A turbine generates the

power output from the unit. When the unit is turned on, the turbine speed ramps up to a running mode,

at which point a bang-bang controller keeps the rotational speed between two thresholds, resulting in a

saw-tooth time-series. Finally, the unit is turned o� and the speed ramps down.

At a coarse level of granularity, there are four major modes in Figure 7.8: Off, RampUp, Run, and

RampDown. At this level, the time series appears semi-Markov.

At a �ner level of granularity, the Run mode can be further described as alternating between two modes:

RunFall and RunRise. The alternation between these two sub-modes also appears semi-Markov, but

the whole process, now consisting of the �ve modes Off, RampUp, RunFall, RunRise, RampDown,

is not semi-Markov. Consider, for example, the probability of transitioning next to the RampDown mode

immediately following a transition to RunRise. Or consider the length of time until the RampDown is

reached at this moment. Because the APU is typically run during the duration of takeo�, the total duration

of the Run mode is fairly regular, say (hypothetically) close to 20 minutes, so that the amount of time

that the system has been only in the RunFall and RunRise modes is also relevant to future evolution of

the system. When the system has been in the Run mode for 19.9 minutes, the probability is high that a

transition to RampDown is imminent, while after Running only 1 minute, the probably of a transition to

RampDown anytime soon is low. Clearly this process is not semi-Markov.

The HSSMM models semi-Markov processes. As such it cannot faithfully model this situation (at least

not as a �ve state process).
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Figure 7.9: An event causes a transition in Sensor B at t

2

but does not e�ect Sensor A.

Transitions on a subset of sensors

A second limitation of the HSSMM arises from its simplistic treatment of multiple sensors. In Figure 7.9,

transition t

2

a�ects Sensor B but does not in
uence Sensor A. Although Sensor A is linear on both sides

of t

2

, the fact that there is no bend in Sensor A at t

2

provides important information, which if modeled

correctly, could aid in the inference process.

The HSSMM as de�ned in Chapter 2 assigns the same set of transitions to all sensors, thus it cannot

model this situation properly.

The underlying transition process in Figure 7.9 could be semi-Markov or non-semi-Markov (such as with

a hierarchical model when t

3

� t

1

is chosen according to a waiting-time distribution, and t

2

� t

1

is chosen

separately). Even if the underlying transition process is semi-Markov, the signals shown in Figure 7.9 are

not semi-Markov since immediately following the transition at t

2

, knowing the state does not summarize all

there is to know about the future | data for Sensor A between t

1

and t

2

adds additional information about

the shape of Sensor A from t

2

to t

3

. So this is again another example of a non-semi-Markov process.

This situation arises when certain events a�ect one sensor without a�ecting the other. Note that in

Figure 7.9, certain events (at t

1

and t

3

) a�ect both sensors. If this did not occur, there would be no problem

since each sensor could simply be modeled and processed individually.

Interacting Processes

Figure 7.10 shows a certain fuel line pressure reading during a 
ight of the space shuttle. Once again, the

time series shown in not semi-Markov. From Figure 7.10 alone, this may at �rst be nonobvious, but it

becomes immediately evident after viewing the two related fuel line temperatures during the same time span

shown in Figure 7.11. The two sensors in Figure 7.11 rise and fall independently, each in a semi-Markov

fashion. The actual pressure plotted in Figure 7.10 occurs downstream on the fuel line from the temperatures

in Figure 7.11, and is essentially a result of the average of the two (recall that pressure and temperature are

proportionally related by Gay-Lussac's law or the more general PV = nRT ).

There are basically four states in this system: fX

1

Rise;X

1

Fallg � fX

2

Rise;X

2

Fallg. A transition in

either individual process causes a transition in the joint process, but at the moment following a transition
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in one process, the state does not capture duration information about the state of the other process. The

joint process is therefore not semi-Markov.

In a big system like the Space Shuttle, there are often multiple independent (semi-Markov) processes

operating simultaneously. When a single sensor is in
uenced by two or more of these processes, the signal

from that sensor is, in general, not semi-Markov. Informally it can be said that the cross-product of two

semi-Markov processes is not semi-Markov (except in a few degenerate cases). In contrast, the cross product

of two Markov process is Markov.

Even though Figure 7.10 is not semi-Markov, it may still be quite reasonable to approximate it using a

semi-Markov process (although the observation model would still requires a slight generalization). This is

simply an instance of using a more di�use model to move along the model-driven to data-driven continuum

(Section 7.1). A thorough understanding of exactly how much is lost by such an approximation is an

interesting topic but beyond the scope of this thesis. Regardless, it should still be realized that modeling

signals more faithfully when the knowledge and justi�cation to do so exists is not even an option in this case

using a pure HSSMM.

7.2.1 The Generalized Semi-Markov Model

All of the above examples can be faithfully modeled using a Hidden Segmented Generalized Semi-Markov

Model (HSGSMM). The semi-Markov transition model of the HSSMM is simply replaced by a generalized

semi-Markov transition model (

[

Haas and Shedler, 1986, Haas and Shedler, 1996, Eakinos, 1991, Glasserman

and Yao, 1992, Glasserman and Yao, 1996, Damerdji, 1996

]

). The observation model is adapted accordingly

with a slight additional generalization.

Like a semi-Markov model, a generalized semi-Markov model operates on a �nite state space with proba-

bilistic transitions; however, the GSMM introduces the notion of multiple clocks. Clocks are a mathematical

abstraction for modeling durations of various events within a process. In a 2-clock GSMM, both clocks are

initially set to some positive value, and then each each begins decrementing towards zero. When one of the

clocks reaches zero, a transition occurs. The transition probabilities depend on which clock reaches zero

�rst, with the next state chosen according to these probabilities. A new value for the expired clock is chosen

from a waiting-time distribution for that clock at the new state. Also, attached to the transition is an action

to be applied to the unexpired clock. Standard actions are to (a) continue decrementing the clock from its

current value, (b) reset it according to its waiting-time distribution at the new state, or (c) pause (disable)

the clock. From this point, the whole cycle repeats | each (unpaused) clock decrementing until a transition

is again triggered by one of them reaching zero, and so on.

The observation model is also generalized to take advantage of the greater generality in the transition

model. Recall from Figures 7.9 and 7.11 that some sensors are not a�ected by certain transitions. Thus,

the HSGSMM contains additional knowledge specifying which transitions a�ect which sensors. This can be

accommodated by specifying for each sensor a partition of the state space. Only transitions across partition

boundaries form transition boundaries for the given sensor. Note that the generalization to the observation

model could equally well be applied to a pure HSSMM with a slight increase of representational power (for

example, instances similar to that in Figure 7.9 might be handled with a standard HSSMM).

Putting all these together, an HSGSMM is described by the following components:

S = fs

1

; ::; s

n

g : The states.

� = f


1

; ::; 


`

g : The clocks.

a




s

i

;s

j

: Transition Probabilities.

b

s

0

: Initial Occupancy Distribution.

c
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.
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i

; s

j
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�
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fContinue;Reset; Pauseg
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 when clock 


�

expires and causes a transition from s

i
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s

j
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�
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�

) = Reset.

^

S

v

: Partition of S for sensor v.

sh(ŝ

i

; v) : Shape of sensor v in ŝ

i

2

^

S

v

.

d

q

(X

v

; t

1

; t

2

) : Shape recognizers.

There is also an issue of how the clocks should be set initially. To avoid additional complexity, we can

simply assume here that all clocks are initially set according to the waiting-time distribution in the initial
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state. Another option would be to add initial clock distribution components to the HSGSMM de�nition.

7.2.2 Examples

All of the previous non-semi-Markov examples can be easily expressed as HSGSMMs. Each of the examples

involves only two clocks, but in all cases the examples can be extended to where more than two clocks are

necessary.

HSGSMM for Hierarchical Signal Shapes

In this example, Clock 1 controls transitions between Off, RampUp, Run, and RampDown, while Clock 2

controls transitions between RunRise and RunFall within the Run mode. Below are the important

components for this example.

a




2

RunRise;RunFall

= a




2

RunFall;RunRise

= 1

b

Off

= 1

a




1

Off;RampUp

= a




1

RampUp;RunFall

= a




1

RunRise;RampDown

= a




1

RunFall;RampDown

= a




1

RampDown;Off

= 1

c




1

RunFall

= Distribution with very large mean

c




1

RampUp

= c




1

RampDown

= Distribution(s) with medium-sized mean.

c




2

RunRise

= c




2

RunFall

= Distribution(s) with small mean.

cl act(�;Off; �; 


2

) = cl act(�;RampUp; �; 


2

) = cl act(�;RampDown; �; 


2

) = Pause

cl act(�;RunFall; 


1

; 


2

) = cl act(�;RunRise; 


1

; 


2

) = Continue

cl act(�; �; �; 


1

) = Continue

Because there is only one sensor,

^

S

v

= S, and the shape recognizers correspond to the shapes seen in

Figure 7.8.

The key for this model is that 


1

continues counting down the entire time the process is in the RunRise

and RunFall states, until eventually it expires and causes the transition to RampDown, at which time 


2

is turned o� (Paused).

HSGSMM for Partially-Independent Sensors

The key to handling the situation depicted in Figure 7.9 lies with the modi�cations to the observation model.

^

S

A

, the partition for Sensor A, is set to a strict partition of S, so that the transition at t

2

in Figure 7.9 is

not a transition in

^

S

A

.

^

S

B

may be S. With this, the transition at t

2

does not in
uence Sensor A.

HSGSMM for Interacting Processes

Although the most complicated of the examples, it may be the easiest example to map onto the HSGSMM

framework. The state space is the cross product of the state spaces for the individual processes, and

a separate clock is simply assigned for each process using the waiting times from the original processes.

cl act(�; �; 


�

; 
) = Continue for all 


�

6= 
. The sensors in Figure 7.11, if included in the model, would be

assigned orthogonal partitions of

^

S, while the sensor in Figure 7.10 would use

^

S

v

= S, i.e., responding to all

transitions.

This example makes it clear that the cross product of ` HSSMM processes can in general be modeled by

an `-clock HSGSMM. Similarly, the cross product of an `

1

-clock HSGSMM with an `

2

-clock HSGSMM is at

most an (`

1

+ `

2

)-clock HSGSMM.
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7.3 Model Learning Issues

Designing good models for any substantial application domain is almost always a very tedious and time-

consuming task. In addition, it can require substantial domain expertise to do well. For these reasons, in

many situations it may be preferable to automatically learn HSSMM models from time-series data.

The most commonmethod for learning Hidden Markov Models (HMMs) and Hidden Semi-MarkovModels

(HSMMs) is the EM-algorithm

[

Dempster et al., 1977

]

. A good review of the method applied to HMMs is

[

Rabiner, 1989

]

, for a review on HSMMs see

[

Guedon, 1992

]

(also for HSMMs,

[

Cook and Russell, 1986, Huang

and Jack, 1989, Guedon and Cocozza-Thivent, 1990, Guedon, 1992

]

), and for HGSMMs see

[

Damerdji, 1996

]

.

The EM-algorithm is a general technique for learning probabilistic models from data, and is fundamentally a

search algorithm for �nding a maximal likelihood model given the data

2

. The EM-algorithm is particularly

well-suited for model re�nement, where it can be used to improve an existing reasonably-good model.

The EM-algorithm involves to basic alternating steps: Estimation and Maximization

3

. The algorithm

applies to models where certain quantities are not directly observable (in the case of the HSSMM, these

are t

i

and s

i

, i = 1; ::; k). During the estimation step, marginal probabilities for the unobservables given

the data are computed based on the current model. These form estimations of the full state. During the

maximization step, the maximum-likelihood model for the estimated full state is identi�ed, and this new

model replaces the previous model. The cycle then iterates. If both steps are done exactly, each iteration is

guaranteed to improve the likelihood of the model given the data. The EM-algorithm is generally known to

have very fast convergence to a locally optimum model.

First, it can be noted that all the machinery necessary to carry out the estimation step has been developed

in this thesis. To perform the maximization step, it is necessary to adopt various restrictions on the HSSMM

so that the necessary parameters can be identi�ed. First, one must adopt a restricted parametric class for

waiting-time distributions. For example, a convenient class is the class of gamma distributions. Having done

this, the two parameters that de�ne a gamma distribution, �; �, can be �t to the estimations (e.g.,

[

Guedon

and Cocozza-Thivent, 1990

]

). The other restriction that is necessary is on the form of shape recognizers.

The most obvious way to enable the EM-learning approach is to specify a library of shape recognizers in

advance. These may be parameterized as long as the parameters can be easily estimated given (weighted)

examples of signals of that shape. With these restrictions, the EM-algorithm can be directly applied. All

the apparatus for doing this has already been developed.

I have not attempted to automatically learn HSSMM models from time-series data. This is something

that could be considered in future work. However, despite the fact that there is appeal in doing so, there

are also situations where learning an HSSMM from data is not a wise approach. This research was initially

motivated by a Space Shuttle monitoring application, and monitoring is a prime example where such a

learning approach may not be appropriate. The problem is that in a monitoring application, available

training data is usually not representative of the situations the model must handle in the �eld

[

Smyth,

1994

]

. Available Shuttle data from past missions is predominantly representative of normal behavior. If

this were used to train a model, the resulting expectations would be very strong that behavior is normal,

making it highly e�ective at tracking normal signals, but much less e�ective at handling novel anomalous

cases. On the other hand, a human designed model can incorporate (heuristic) knowledge about where

strong expectations are appropriate and where expectations should be weakened.

In summary, the machinery for a HSSMM (maximum likelihood) learning algorithm is in place, but this

has not been attempted as part of the work for this thesis. Learning the HSSMM from available data appears

largely inappropriate for the application that initially motivated this research, and these considerations may

be something to consider for other potential applications as well.

2

Although the EM-algorithm only guarantees a locally optimum solution, not the global optimum.

3

The literature is inconsistent on exactly what EM stands for, with some authors calling it Expectation-Modi�cation, or

Expectation-Maximization, etc.



Chapter 8

Conclusion

Iterative dynamic discretization is a method for solving graphical probabilistic models by constructing a

discretization of the original model, solving it exactly, and iterating to successively improve the solution.

The central thesis of this research is that the information learned from solving a discrete model can be

used e�ectively for guiding the selection of a new discretization. In so doing, the new discretization is more

informed, thus forming the basis for an iterative algorithm, and providing a means for dynamically tailoring

the discretization to the speci�c problem instance.

This topic has been explored using, as a motivating application, the time-series segmentation task. A

basic framework was developed (Chapter 4) for utilizing the information obtained from solving a discrete

model to select a new discretization. Evidence that this framework provides an e�ective means for selecting

a new discretization, and for eventually converging to a good solution, has appeared in at least two forms.

First, theoretical analyses (Chapter 5) have shown that with mild positive assumptions on the distribution

of interest, the iterative algorithm is guaranteed to �nd a solution arbitrarily close to the best solution if run

long enough. And second, actual runs of the algorithm (Chapter 6) show rapid convergence as a function

of the number of iterations, indicating that the selection of new discretizations is being accomplished in an

e�ective manner.

In pursuit of this thesis, this research has also developed a number technologies. In particular, this thesis

has:

�De�ned an expressive time-series modeling formalism, the HSSMM. Section 2.2

�Speci�ed a (di�cult) model-based time-series segmentation task as an optimization

task.

Section 2.3

�Used the theory and methods of graphical probabilistic models to decompose the

original (enormous) optimization problem into a collection of much smaller opti-

mization tasks.

Section 3.1

�Developed and applied iterative dynamic discretization to handle real-valued vari-

ables and search the space of possible discretizations.

The time-series segmentation task has provided a challenging task for exploring computational techniques

and issues surrounding the approximation of graphical probabilistic models. The centerpiece, iterative

dynamic discretization, puts together many component technologies in a useful, interesting, and powerful

fashion. The technique is applicable far beyond just time-series segmentation tasks, and can be applied to

a wide class of graphical probabilistic inference problems.

8.1 Perspectives on this work

As the discussion in the introduction and throughout the thesis emphasizes, iterative dynamic discretization

can be viewed from a number of di�erent perspectives:

1. As a method for handling real-valued variables in Bayesian networks via discretization.

146
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2. As a way to combine Monte Carlo Markov chain methods with exact propagation to leverage the

individual strengths of each.

� For MCMC, a method to speed up convergence by considering multiple con�gurations at each

iteration and harnessing the ability to analyze this collection with exact methods.

� For MCMC, 
exibility to introduce domain-speci�c channels of mobility (e.g., keeping neighbor's

best, Section 6.7).

� For exact methods, a method dealing with nonconjugate distributions.

� For exact methods, a method for dealing with very large (or in�nite) sample spaces of an individual

variable.

3. As an instance of iterative approximateKnowledge-Based Model Construction (KBMC). (Section 1.8.3)

The central thesis of this work could be stated as: Information learned from solving a (simpli�ed) con-

structed model can be used in an e�ective manner to construct a new simpli�ed model. Discretization

is simply one special case of model construction, and by supporting the thesis for this special case,

the credibility of the endeavor for iterative KBMC in general has been increased, and perhaps some

lessons and experience gained here may transfer to other forms of model construction.

8.2 Contributions & Results

Speci�c contributions of this thesis include:

1. Introduction of the Hidden Segmented Semi-Markov Model (HSSMM) as a useful language for ex-

pressing knowledge about time-series (Section 2.2). The novel part of this model is the segmented

observation process. Related, but undeveloped by this thesis, is the introduction of the even more

expressive Hidden Segmented Generalized Semi-Markov Model (HSGSMM), Section 7.2.1. Again, the

segmented observation process is the novel contribution.

2. An approach to HSSMM-based segmentation, based on structural decomposition plus iterative dynamic

discretization.

3. A general methodology of structural decomposition (Section 3.2).

(a) With an emphasis on using graphical probabilistic models as a computational tool for solving

problems arising in other formalisms, and for a tool that is useful in designing formalisms for

speci�c applications.

(b) A general axiomatization characterizing when structural decomposition can be applied. This

includes two axiomatizations (the second being due to

[

Shenoy and Shafer, 1990

]

), elaborating

the two di�erent but closely related methods for propagation.

4. Focused Gibbs sampling. Although an instance of pure Gibbs sampling, with graphical probabilistic

models focused Gibbs sampling provides yet another means for combining exact propagation with

Monte Carlo methods.

5. A basic framework for studying iterative dynamic discretization and its possible variants (Section 4.2).

This framework serves to relate possible approaches in a meaningful way.

6. Methods for estimating sampling distributions for iterative dynamic discretization, including an algo-

rithm for sampling from f

mbp

(Section 4.4.2).

7. A formal proof that iterative dynamic discretization is recurrent and ergodic (Chapter 5). Some

characterization (both positive and negative) about the asymptotic behavior of iterative dynamic

discretization (Section 5.3).
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8. Experimental demonstration that iterative dynamic discretization can signi�cantly speed up conver-

gence (on a per-iteration basis) of MCMC methods (Chapter 6). Several of the most powerful variations

of iterative dynamic discretization reduced the number of iterations required for convergence by at least

two orders of magnitude as compared to (focused) Gibbs sampling.

9. A study of where the power of iterative dynamic discretization comes from. Two factors are especially

important:

(a) In a single iteration, a large number of con�gurations are analyzed with exact methods.

(b) The added 
exibility makes it possible to introduce domain-dependent \channels of mobility".

10. Section 7.1 provided some experimental results concerning the robustness of the HSSMM formalism.

Experiments examined the impact of ignorance in waiting-time distributions and transition probabili-

ties, and the impact of noise in the data. (This study was, however, very brief)

I have attempted to write this thesis in a manner that leaves the reader with a rich collection of tools

and methods, and in which all algorithms presented are 
exible and easy to modify or customize. I hope

this allows the reader to come away with something more useful than just the precise algorithms used by

and studied in this thesis. All the algorithms have been couched in terms of general methods so that they

can easily be altered or changed to �t variations in assumptions or entirely di�erent unforeseen applications.

8.3 The Generality of Iterative Dynamic Discretization

Iterative dynamic discretization is a general method for solving arbitrary graphical probabilistic networks

with or without real-valued variables. Because it was applied in a very speci�c fashion in this thesis, this

generality may not be entirely apparent, and so an elaboration on this point here is worthwhile.

The general procedure for applying iterative dynamic discretization to an arbitrary network is as follows:

1. Triangulate the network and extract a junction tree.

2. Identify the clusters of variables, such that each variable in a cluster appears in exactly the same nodes

of the junction tree.

3. Treat each cluster as if it were a variable with a very large sample space. At each iteration, iterative

dynamic discretization selects m joint values for the variables with a single cluster.

4. Once each cluster is assigned m distinct values, the junction tree is discrete and easily propagated to

analyze the full discretization.

5. Iterate. The information obtained from analyzing the current discretization guides the next choice of

discretization.

The identi�cation of clusters bears resemblance to issues of blocking in Blocking Gibbs sampling (Sec-

tions 3.4.2 and 1.8.4). The method of selecting m discrete values for each cluster is similar to the method

used to handle Gibbs frames in hybrid propagation

[

Dawid et al., 1994, Kjaerul�, 1995b

]

(Section 1.8.4).

However, hybrid propagation methods have not considered an iterative framework, and the precise use is

somewhat di�erent.

This thesis has, admittedly, not explored the generality of iterative dynamic discretization on arbitrary

graphical structures. Its e�ectiveness when used in this fashion (as opposed to its use simply to discretize

real-valued variables) is open for investigation. Note also that hybrid propagation has not, to date, been

satisfactorily investigated empirically either, so the e�ectiveness of methods of this type in general graphical

settings is yet to be seen.
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8.4 Open Problems

For Iterative Dynamic Discretization

Perhaps the most immediate open problem speci�c to iterative dynamic discretization is to characterize

the properties of its asymptotic behavior (see Section 5.3). In its current form, the algorithm cannot be

applied directly to the problem of approximating marginal posterior distributions, or even to approximating

expectations, since there is currently no guarantee in general that the uniform projection matches the

distribution of interest in any meaningful way. This did not get in the way of applying it to the maximum a

posteriori inference problem de�ned by the time-series segmentation application, but it is critical for more

general uses of the technique.

It is possible that iterative dynamic discretization using uniformweighting results in a ergodic distribution

whose posterior-weighted projection is the distribution of interest. Perhaps there is some other variation of

iterative dynamic discretization and/or projection that has this or some other useful and easily characterized

property. However, these characterizations remain to be proven.

It is also possible that some new variation on iterative dynamic discretization may have asymptotic

properties that can be usefully characterized. One promising approach is to wrap a Metropolis-Hastings

acceptance loop around the discretization step (discussed at the end of Section 5.3). There is reason to

believe that, with the appropriate acceptance rule, this may result in a uniform projection equal to the

distribution of interest, or agreeing on marginals with the distribution of interest.

Not only would results of this form expand the applicability of the method, they would also greatly clarify

the basic method by formally identifying exactly what the algorithm is achieving as a MCMC method.

Regarding empirical evaluation of iterative dynamic discretization, it is fair to say that results in this

thesis are barely the tip of the iceberg, and much further study in a wide variety of settings is certainly

warranted.

For Time-Series Modeling

The HSSMM is a rich formalism for expressing domain knowledge. The formalismis general enough to handle

virtually any arbitrary shape recognizer, yet during this research I did not have the time and resources to

investigate this space much. There may be much to learn from exploring the use other shape recognizers.

I encountered several problems when using the HSSMM formalism. Many of these were solved during

the course of the research, but some remain. I have noticed very poor/unintuitive results when waiting-time

distributions within a model have variances that di�er by more than an order of magnitude. Designing

a HSSMM time-series model is not always trivial, and tools to help with this task (including learning

algorithms) could help to expand the usefulness of the formalism.

Like Two-Window segmentation methods (Section 2.4.1), the HSSMM evaluates the plausibility of a

proposed transition time based on the �t of the data on either side of the proposed time. In contrast,

transition-recognition methods (Section 2.4.2) base this evaluation on features in the data, such as whether

the point is an in
ection point. I believe that transition-recognition methods are better for �nding transition

points that agree with human intuition. There is the possibility of introducing a transition recognition

component into the HSSMM formalism as basically another term in the evaluation formula (2.3). This

would probably add much 
exibility for an engineer who wishes to design his model to yield optimum

segmentations corresponding to his intuitions.

For Further Utilizing Time-Series Structure

Generalized Semi-Markov Models (Section 7.2.1) greatly extend the expressiveness of the HSSMM in useful

ways. These extensions become even more important in very complex and high-dimensional systems where

many separate but interacting processes are involved. Currently, little of the structure between di�erent

duration processes can be utilized. Even though two processes may operate independently (but in
uence a

common sensor), it is not entirely clear how to harness this independence in the most e�ective fashion.

Related is the problem of utilizing structure within the state space of the HSSMM. This is a problem of

interest also for temporal Bayesian networks and temporal in
uence diagrams, and progress in that area is

relevant here.
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These two areas, taken together, are perhaps the biggest determiner of scalability. The ability to handle

large models of complex systems, for example, of the space shuttle and its thousands of sensors, hinges

largely on good solutions to these problems. These are the types of problems that are unlikely to see a

clean-cut solution, but are more likely to see improvements in technology over time.

Knowledge-Based Model Construction

Most existing works on KBMC consider knowledge-bases containing quanti�ers. Although the time dimen-

sion in the HSSMM is in some sense quanti�ed, this is at most a very speci�c case. Exploring the endeavor

of iterative approximate KBMC in more classic knowledge bases is still of great interest.

8.5 Closing

Graphical probabilistic models provide a useful computational tool for obtaining algorithms for existing

problems and for guiding the development of formalizations for speci�c tasks. Both exact and approximate

solution techniques play important roles for these models, with complementary properties. Much of the

future advancement in computational methods for solving these models will likely involve methods for

utilizing combinations of exact and approximate methods. Iterative dynamic discretization provides one

such data point for this enterprise.



Appendix A

A Model Used for Experiments

Model Speci�cation

#State Definitions:

NumStates = 4

StateName[0] = "shortRise"

StateName[1] = "shortFall"

StateName[2] = "longRise"

StateName[3] = "longFall"

# Transition Definitions:

trans from state 0 {

to state 0 with prob 0.1

to state 1 with prob 0.4

to state 2 with prob 0.1

to state 3 with prob 0.4

}

trans from state 1 {

to state 0 with prob 0.4

to state 1 with prob 0.1

to state 2 with prob 0.4

to state 3 with prob 0.1

}

trans from state 2 {

to state 0 with prob 0.1

to state 1 with prob 0.4

to state 2 with prob 0.1

to state 3 with prob 0.4

}

trans from state 3 {

to state 0 with prob 0.4

to state 1 with prob 0.1

to state 2 with prob 0.4

to state 3 with prob 0.1

}
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initially {

state 0 with prob 0.25

state 1 with prob 0.25

state 2 with prob 0.25

state 3 with prob 0.25

}

# Clock Time Distributions:

when clock 0 expires {

at state 0 use gammadist(3,70) # Fast rise Time

at state 1 use gammadist(3,70) # Fast fall Time

at state 2 use gammadist(3,200) # Slow rise Time

at state 3 use gammadist(3,200) # Slow fall Time

}

# Sensors and Shapes:

NumSensors = 1

Name[Sensor 0] = "SENSOR"

Description[Sensor 0] = "Simulated Sensor"

sensor 0 {

has qualitative shape LINEAR_RISE(2.0) from state 0

has qualitative shape LINEAR_FALL(2.0) from state 1

has qualitative shape LINEAR_RISE(2.0) from state 2

has qualitative shape LINEAR_FALL(2.0) from state 3

}

Transition Process

The model above is interpreted as follows.

The model has four states: fshortRise; shortFall; longRise; longFallg.

Transition probabilities are given by the following matrix. Basically, there is a 0:8 chance of transitioning

from a rising (falling) signal to a falling (rising) signal, and a 0:2 chance of transitioning from a rising (falling)

signal to another rising (falling) signal (in which case the slope may change, but the sign of the slope does

not change).

�

a

s

i

;s

j

�

i;j

=

2

6

6

4

0:1 0:4 0:1 0:4

0:4 0:1 0:4 0:1

0:1 0:4 0:1 0:4

0:4 0:1 0:4 0:1

3

7

7

5

Waiting time distributions are simply:
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c

shortRise

(�t) = GammaDist[� = 3; � = 70](�t)

c

shortFall

(�t) = GammaDist[� = 3; � = 70](�t)

c

longRise

(�t) = GammaDist[� = 3; � = 200](�t)

c

longFall

(�t) = GammaDist[� = 3; � = 200](�t)
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Sensors:

A single sensor was used for these experiments. The data for that sensor was in a �le named "SENSOR".

This data was generated synthetically for the experiments using the same model above. How simulation was

performed is discussed in Section A.1.

Observation Model

Two shape recognizers are used: LINEAR RISE(�) and LINEAR FALL(�). The argument, � > 0, speci�es how

much noise is to be tolerated. If � is close to zero, then only very good (linear) �ts with little noise evaluate

to something signi�cantly greater than zero. If � is large, then noise and poor �ts are tolerated to a greater

extent.

These shape recognizers �rst determine the degree of linearity by �tting a straight line to the data that

falls in the speci�ed interval. A small-sample correction (discussed on Page 33) is made to the residual, and

then the probability of observing at most this residual under the assumption that the residual distributes as

an exponential distribution with standard deviation � is computed. In other words, this is the likelihood of

a residual equal to or less than what was actually observed. This likelihood serves as the degree of linearity.

Second, a judgement is made is to whether the slope is positive or negative. Since noise in the data

could cause a positive slope in the best �t line even when the underlying shape is LINEAR FALL, a degree

of linearity is computed. If a slope is close to zero and very few data points are used in the �t, then there

may be signi�cant uncertainty in the sign of the underlying slope. On the other hand, if the best �t line

has a steep slope and there is plenty of data used in that �t, then the slope of the underlying signal is very

certain. There may be a lot of data, but the vast majority of it might be clumped in a small time interval.

In this case there can still be a lot of uncertainty in the slope despite there being a lot of data since the line

could easily pivot with little change to the residual.

Standard techniques for �nding the best �t line also yield the variance of the estimates for slope and

intercept (

[

Press et al., 1992, Page 663

]

). This variance is low if there are many well-spread out data points

and small if there is little data or if all data is clumped into a small time interval. With a normality

assumption, this can be used to compute the likelihood that the underlying slope is positive or negative. If

the variance estimate is small and the slope is not near zero, then the likelihood of the underlying slope being

di�erent from the �tted slope is very small. If the variance is large or the �tted slope is close to zero, then

the likelihood is much larger (although it can never be more than 0.5). This likelihood (for the appropriate

sign of slope) serves as slope detector.

The shape recognizer's evaluation is then the product of the degree of linearity with the likelihood that

the underlying slope is falling or rising. The algorithms used (Chapter 3 and 4) do not require the estimate

to be normalized, thus making this evaluation feasible.
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A.1 Simulation

To obtain synthetic data from a known model, it necessary to simulate a HSSMM; however, the HSSMM

only models signal shapes qualitatively, so that the precise time series is underspeci�ed by the model. To

generate synthetic data, it is necessary to �ll in (arti�cially) the missing speci�cations.

The model does specify states, transition probabilities, and waiting-time distributions precisely. Thus, a

sequence of transitions and states can be stochastically generated according to the probabilities speci�ed by

the HSSMM. After such a simulation, one is left with a sequence of states, transition times, and a label of

the shape of each sensor in each segment.

For the model in this appendix, the shape in each segment is either LINEAR RISE(0.2) or LINEAR FALL(0.2).

These are underspeci�ed since they do not indicate anything about what magnitude slope the signal has

or anything about the absolute values of the end points of each segment. The simulation used to generate

the data for the experiments picked an initial value for y

v

[t

0

] from U [0; 100]. From there, each y

v

[t

i

], where

t

i

is the time of the t

th

transition, was set to y

v

[t

i�1

] + u, u � U [5; 20], for LINEAR RISE or y

v

[t

i�1

] � u,

u � U [5; 20], for LINEAR FALL. Then y

v

speci�ed a noiseless piecewise-linear signal. After this, the actual

data was generated at each discrete 1 second interval by adding a zero-mean independent error to the ideal

signal (given by y

v

). The error was exponentially distributed in both directions with standard deviation

given by � (� = 2:0 in this model).
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Model used for Shuttle Data

Model Speci�cation

#State Definitions:

NumStates = 3

StateName[0] = "Startup"

StateName[1] = "Rise"

StateName[2] = "Fall"

# Transition Definitions:

NumClocks = 1

ClockName[0] = "Clock_0"

trans from state 0 {

on clock 0 to state 1 with prob 0.5

on clock 0 to state 2 with prob 0.5

}

trans from state 1 on clock 0 to state 2 with prob 1

trans from state 2 on clock 0 to state 1 with prob 1

initially {

state 0 with prob 1

state 1 with prob 0

state 2 with prob 0

}

# Clock Time Distributions:

when clock 0 expires {

at state 0 use uniformdist(5000,10000)

at state 1 use gammadist(15,70) # Fast rise Time

at state 2 use gammadist(30,150) # Slow fall Time

}

# Sensors and Shapes:
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NumSensors = 2

Name[Sensor 0] = "V46T0108A"

Name[Sensor 1] = "V46T0104A"

Description[Sensor 0] = "APU 1 Fuel Line Temp 1"

Description[Sensor 0] = "APU 1 Fuel Line Temp 2"

sensor 0 {

depends on clock 0

has qualitative shape LINEAR_RISE(2.0) from state 0

has qualitative shape LINEAR_RISE(2.0) from state 1

has qualitative shape LINEAR_FALL(2.0) from state 2

}

sensor 1 {

depends on clock 0

has qualitative shape LINEAR_FALL(2.0) from state 0

has qualitative shape LINEAR_RISE(2.0) from state 1

has qualitative shape LINEAR_FALL(2.0) from state 2

}
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