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Abstract

Lower and upper probabilities, also known as

Choquet capacities, are widely used as a con-

venient representation for sets of probability

distributions. This paper presents a graphi-

cal decomposition and exact propagation al-

gorithm for computing marginal posteriors of

2-monotone lower probabilities (equivalently,

2-alternating upper probabilities).

1 Introduction

Let (
;F) be a probability space, and P a non-empty

set of probability distributions on that space. The

functions

P (A) = inf

P2P

P (A) P (A) = sup

P2P

P (A) (1)

de�ned for any A 2 F , are lower and upper probability

envelopes.

A number of uses have been suggested for lower prob-

abilities, and their use is rapidly increasing. Some feel

that the use of a single exact distribution in Bayesian-

style inference fails to satisfactorily distinguish be-

tween uncertainty and ignorance or between certainty

and con�dence, and therefore a more general repre-

sentation such as lower probability functions may be a

superior representation of belief [32, 44]. Lower prob-

abilities may also arise from incomplete or partial elic-

itation, such as when insu�cient knowledge is avail-

able, or when it is too time consuming to obtain the

necessary knowledge to warrant the precision inherent

in exact probabilities [16, 20]. Lower probabilities are

also useful for studying sensitivity and robustness in

probabilistic inference [3, 46, 49], and they can be used

to weigh computation e�ort against modeling precision

[11]. They arise in group decision problems [39] and in

axiomatic approaches to uncertainty when the axioms

of probability are weakened [18, 46]. They arise when

determining constraints on probabilities given only the

probabilities on a �nite set of other events [35]. Finally,

they may result from the abstraction of more detailed

probabilistic models [8, 10, 21].

In recent years, graphical decompositions of probabil-

ity distributions have found widespread interest and

application [23, 36]. These representations not only

admit a concise and structured speci�cation of a joint

probability distribution, but also allowmarginal poste-

rior probabilities to be e�ciently computed by taking

advantage of the graphical structure [12, 25, 31, 36].

Analogous decompositions for lower probabilities may

present similar opportunities for the many previously

cited applications areas. Unfortunately, lower prob-

abilities seem to be rather resistant to propagation.

For example, if they are updated incrementally as evi-

dence arrives, as is often done in Bayesian applications

of pure probability, the resulting bounds depend on

the order that evidence arrives, and are not equivalent

to the bounds obtained by updating the original prior

with all the evidence in a single step [9, 22, 37]. Funda-

mentally, the representation looses information during

the updating process. Any direct attempt at propaga-

tion would almost certainly experience the same losses

of information at each propagation step, and could in-

variably push the representation to either vacuous or

inconsistent probability bounds.

A number of previous works have developed propa-

gation algorithms for various representations of con-

vex sets of probabilities. Notably, [4, 5] developed

an algorithm, based on the axioms of [43], to propa-

gate convex sets of probabilities represented by convex

�nite-sided polytopes in the probability simplex. Their

polytopes are a generalization of the lower probabili-

ties considered here; however, there are good reasons

why one might prefer to deal with the lower probabil-

ity representation directly rather than the more gen-

eral convex probability formalism. For example, lower

probabilities are more natural, refer only to the basic

events in the probability space (rather than surfaces

in the probability simplex), and have potential to be

much more computationally tractable. Importantly,

the propagation of polytopes can cause the number of

sides to increase multiplicatively with each propaga-

tion step ([44]). [16] and [44] developed algorithms to

propagate probability bounds in graphical structures.

Their bounds, being only over individual elements of

the probability space, are special cases of lower prob-



ability and can be substantially less informative, so

the interest in the more expressive lower probability

remains. Logics for reasoning with constraints on the

probability of an incomplete set of events have been

used by [1, 35, 38, 45], and indeed some even call

the inference process \propagation". The problem ad-

dressed by these and the use of the term propaga-

tion are considerably di�erent than those in this paper

since our initial bounds are prior lower probabilities

as opposed to absolute constraints. When combined

with knowledge of other propositions, our local prior

bounds are subject to revision, so they are not con-

straints in that sense. A Dempster-Shafer belief func-

tion is syntactically a special case of a 2-monotone

lower probability, and a number of papers have devel-

oped decompositions and propagation algorithms for

belief functions, e.g., [29, 42, 50]. In these examples,

however, the belief function is given an evidential in-

terpretation [22, 41], rather than a lower probabilis-

tic one. Propagation of second-order distributions has

been considered by [33] and [34]. To date, the author

is not aware of any previously published algorithm to

propagate lower probability bounds directly.

This paper introduces a decomposition and propaga-

tion algorithm for the lower probability representation.

It overcomes the apparent resistance of lower proba-

bility to propagation by utilizing the observation of [9]

that the problems with lower probability updating can

be alleviated by using a di�erent and more informative

internal representation for the bounds. [9] shows that

the more informative internal representation can actu-

ally be substantially more e�cient. The new propaga-

tion algorithm allows evidence to be locally and incre-

mentally incorporated, and marginal posterior lower

probabilities to be computed via propagation.

2 Lower Probability

Let (
;F = 2




) be a �nite probability space, and

P : F �! [0; 1] be a set function on this space. P is

called a 2-monotone lower probability (or 2-monotone

Choquet capacity [7]) when for any A;B 2 F the fol-

lowing hold:

1. P (;) = 0, P (
) = 1

2. P (A) + P (B) � P (A [B) + P (A \B)

Not every probability envelope (as de�ned by (1)) is

2-monotone, but most applications restrict attention

to 2-monotone representations since it is the weakest

property that readily admits simple closed-form ma-

nipulations.

A dual set function, called a 2-alternating upper prob-

ability (or 2-alternating Choquet capacity), is given by

P (A) = 1�P (

�

A), where

�

A = 
�A denotes the com-

plement of A. It follows that for any A;B 2 F ,

1. P (;) = 0, P (
) = 1

2. P (A) + P (B) � P (A [B) + P (A \B)

3. P (A) � P (A)

A probability distribution P on (
;F) is said to be

consistent with P if for all A 2 F , P (A) � P (A),

or equivalently, P (A) � P (A). Denote the set of all

distributions consistent with P by P(P ). Every two-

monotone lower probability has at least one consistent

probability distribution. Lower probabilities are natu-

ral representations for convex sets of distributions |

namely, P represents the set of all distributions on

(
;F) consistent with P . Note that there are many

di�erent convex sets of distributions with bounds given

by P , but when P is speci�ed, it normally is assumed

to represent only the maximal such set.

Let P (AjE) = inffP (AjE) : P 2 P(P ); P (E) > 0g.

When P is 2-monotone and P (E) > 0, it is well-known

[9, 14, 15, 48] that

P (AjE) =

P (A \E)

P (A \E) + P (

�

A \E)

P (AjE) =

P (A \E)

P (A \E) + P (

�

A \E)

(2)

When 0 = P (E) < P (E), then P (AjE) = 1 whenever

A � E and is zero otherwise ([9]). Equation (2) also

provides valid but non-exact bounds when P is not 2-

monotone, and is the only instance in this paper where

2-monotonicity is used.

The M�obius transform of a lower probability function

is de�ned by ([40, pg. 39])

m(A) =M[P ](A) =

X

B�A

(�1)

jA�Bj

P (B) (3)

The summation in (3) is taken over all sets B 2 F such

that B � A, but in all the summations that follow,

we suppress B 2 F from the notation here for conve-

nience. If m(A) is non-negative on all sets A 2 F , P

is said to be in�nitely-monotone, and is also often re-

ferred to as a belief function. The M�obius transform is

information preserving, such that the original function

P can be recovered from m using the inverse M�obius

transform given by ([40, Lemma 2.3], [6, Appendix]):

P (A) = M

�1

[m](A) =

X

B�A

m(B)

The commonality transform of an upper probability

function is de�ned by ([40, pg. 44]):

Q(A) = Q[P ](A) = �

X

B�A

(�1)

jBj

P (B) (4)

when A 6= ; and Q(;) = 1. This transform is also

information preserving, so that the original P can be

recovered fromQ using the inverse commonality trans-

form given by ([40, Theorem 2.6])

P (A) = Q

�1

[Q](A) = 1�

X

B�A

(�1)

jBj

Q(B)



Proposition 1 Let A;E 2 F . The following hold.

P (A \E) = M

�1

[m

0

] (A)

m

0

(A) =

�

m(A) if A � E,

0 otherwise

(5a)

P (A \E) = Q

�1

[Q

0

] (A)

Q

0

(A) =

�

Q(A) if A � E,

0 otherwise

(5b)

where m = M[P ] and Q = Q[P ].

Proposition 1 allows evidence to be incorporated into

the representation. Both m

0

and Q

0

in (5) can be

incrementally updated without a loss of information

([9]). In other words, if E

1

is learned, and then E

2

is later learned, E

1

can be incorporated �rst, and m

replaced by m

0

. Then when E

2

is learned, E

2

can be

incorporated into the new representation. The �nal

representation is identical to that obtained by incor-

porating E

1

\ E

2

into the original belief in one step.

Thus, by maintaining m

0

and Q

0

internally, P (AjE)

and P (AjE) can be incrementally updated and at any

time obtained from (2).

3 Joint Lower Probability

Let V = fx

1

; :::;x

k

g be a set of variables taking on

possible values from 


1

; :::;


k

. A joint assignment,

x = �

i=i::k

x

i

, takes on a value from 
 = 


1

� ::: �




k

. Again, we assume 


i

is �nite, F = 2




. If A �

V is a subset of variables (A = fx

i

1

; :::;x

i

`

g), then

x

A

denotes x

i

1

x

i

2

:::x

i

`

, and 


A

= 


i

1

� ::: � 


i

`

.

Note that boldface capital letters denote subsets of

variables, while non-bold capital letters denote subsets

of 
, and non-bold small letter denote elements of 
.

When A � V and B 2 F , B

A

denotes fx

A

: x 2 Bg;

therefore, B

A

2 F

A

= 2




A

.

Since (


A

;F

A

) is a probability space, a lower prob-

ability, P

A

, can be speci�ed over this space as well.

The subscript on P

A

is used for notational clarity to

indicate the underlying space if it is not (
;F) (i.e., no

subscript is equivalent to a subscript V). Subscripts

are similarly used on m

A

and Q

A

. These subscripts

are not operators, they simply distinguish di�erent

functions in a way that always makes it clear what the

underlying space is. When A 2 F

A

is a set and B a

subset of variables, B � A, then A

"B

= A�f


BnA

g,

and A

"

= A

"V

.

Given a joint lower probability in a propagation frame-

work, one is normally interested in the marginal lower

probability over a small subset of variables. The

propagation framework allows these marginals to be

computed e�ciently. The functions Loc

m

(m;A) and

Loc

Q

(Q;A), de�ned below, return the marginal of m

or Q localized to the given variables in A. These are

de�ned by

Loc

m

(m

B

;A)(A) =

X

B 2 F

B

B

A

= A

m

B

(B) (6a)

Loc

Q

(Q

B

;A)(A) = (�1)

jAj

X

B 2 F

B

B

A

= A

(�1)

jBj

Q

B

(B) (6b)

where m

B

and Q

B

are M�obius or commonal-

ity assignments over (


B

;F

B

). Both of (6a)

and (6b) are generalizations of the standard no-

tion of marginalization of a point probability dis-

tribution. It is important that when A � B,

then Loc

m

(Loc

m

(m;B);A) = Loc

m

(m;A) and

Loc

Q

(Loc

Q

(Q;B);A) = Loc

Q

(Q;A).

The following fundamental theorem of marginal lower

probabilities states that marginal lower probabilities

are related to joint lower probabilities in the manner

that one would intuitively expect.

Theorem 1 Denote m

B

= M[P

B

] and Q

B

=

Q[P

B

]. Let A � B and

m

A

(A) = Loc

m

(m

B

;A)(A)

Q

A

(A) = Loc

Q

(Q

B

;A)(A)

Then M

�1

[m

A

](A) = P

B

(A

"B

) and Q

�1

[Q

A

](A) =

P

B

(A

"B

) for all A 2 F

A

.

For example, the marginal bounds as de�ned by (6) for

an event A 2 F

A

are just [P (A

"

); P (A

"

)]. The com-

bination of (2) with Theorem 1 and Proposition 1 pro-

vides the basis for computing marginal posterior lower

probabilities. Suppose A is a subset of variables, and

one wishes to compute the marginal posterior P (A

"

jE)

where A 2 F

A

and E 2 F . This is obtained from

P (A

"

jE) =

M

�1

[Loc

m

(m

0

;A)](A)

M

�1

[Loc

m

(m

0

;A)](A) +Q

�1

[Loc

Q

(Q

0

;A)](

�

A)

(7)

where m

0

and Q

0

are given by (5a) and (5b). The

same bound can be obtained (when P is 2-monotone)

by applying Bayes's rule to all distributions consistent

with P , marginalizing all of them to A, and taking the

lower bound.

4 Graphical Decomposition

Let G = (V; E) be an undirected graph with vertices

V and edges E � ff�; �g : �; � 2 V; � 6= �g. The

vertices of our graphs correspond to the random vari-

ables V above, hence the dual use of V. A path of

length L from �

0

to �

L

is a sequence of at least two

vertices, �

0

; �

1

; :::; �

L

, such that f�

i

; �

i+1

g 2 E. A

cycle is a path with �

0

= �

L

. A subset of vertices,

S, is said to separate A from B when all paths from



any node of A to any node of B contain a node in

S. If A is a subset of vertices, the graph G

A

induced

by A is the subgraph G

A

= (A; E

A

) where E

A

is

the set of edges in E with both endpoints in A (i.e.,

E

A

= ff�; �g : �; � 2 Ag \E). A subset of vertices,

A, is called complete when all pairs of vertices in A

are connected. If A complete and is not a subset of

a larger complete set of vertices, then A is called a

clique. The set of all cliques in G is denoted by C.

A pair of vertex subsets, (A;B), decomposes G when

V = A [ B, A \B is complete, and A \B sepa-

rates A from B. The decomposition is called proper if

A;B 6= V. A graph G is decomposable when it is com-

plete, or if there exists a proper decomposition (A;B)

into decomposable subgraphs G

A

and G

B

. A well

known graph theoretic result (e.g., [19]) is that a graph

is decomposable if and only if it is triangulated (also

called chordal), that is, if all cycles of length L � 4

contain a short-circuiting edge (a chord) between two

non-consecutive vertices in the cycle. Any graph can

be converted to a triangulated graph by adding edges,

but �nding the optimal triangulation is in most cases

NP -hard ([2]). Heuristics for triangulation are often

e�ective ([27]). The above is standard graph-theoretic

terminology. For further reference see [19].

It is also convenient to introduce some additional ter-

minology. If G is a graph with cliques C, and A 2 F is

a set, the rectangularization of A with respect to G is

2

A =

\

C2C

A

C

"

A is a rectangular set (or just rectangle) on G when

2

A = A. It is always the case that A �

2

A, and fur-

thermore,

2

A is the smallest rectangle containing A.

Denote the set of all rectangular sets on G by R, and

the set of all rectangular sets on subgraph G

A

by R

A

.

We say a lower probability, P , has a rectangular core

on G if M[P ](A) = 0 whenever A 62 R, or equivalently,

when Q[P ](A) = Q[P ](

2

A) for all A 2 F .

De�nition 1 Let (G

m

;G

Q

) be a pair of decomposable

graphs, and let R

m

and R

Q

be the rectangular subsets

on G

m

and G

Q

respectively. We say that a lower prob-

ability P is Markov with respect to (G

m

;G

Q

) when for

any decomposition (A;B) of G

m

and any decomposi-

tion (C;D) of G

Q

,

M[P ](A) =

Loc

m

(M[P ];A)(A

A

) � Loc

m

(M[P ];B)(A

B

)

Loc

m

(M[P ];A\B)(A

A\B

)

when A 2 R

m

, M[P ](A) = 0 when A 62 R, and

Q[P ](A) =

Loc

Q

(Q[P ];C)(

2

A

C

) �Loc

Q

(Q[P ];D)(

2

A

D

)

Loc

Q

(Q[P ];C \D)(

2

A

C\D

)

In other words, m and Q must both be individually

Markov and P must have a rectangular core on both

G

m

and G

Q

. The extra requirement that P have a rect-

angular core is a technical detail that appears when

y

x

y

z

y

y

X M[P ](X)

fxyz; �x�y�zg 4/9

f�xyz; x�y�z; �x�y�zg 2/9

fx�yz; �xy�z; �x�y�zg 2/9

f�x�yz; xy�z; x�y�z; �xy�z; �x�y�zg 1/9

Figure 1: Two (identical) sensors, x and y, are set

up to detect an earthquake, z. Each sensor functions

correctly in 2=3 of all cases. In the remaining cases,

it does not sound when there is an earthquake, but

may or may not function correctly when there is no

earthquake. So that no further distributional assump-

tions are made, the joint reliability of the sensors is

modeled by a lower probability, factorized according

to the graph shown above. For conciseness, only non-

zero M�obius assignments are shown. The joint lower

probability is Markov | both m and Q factor on the

graph.

generalizing decomposability to non-additive set func-

tions. Without this restriction, one could place mass-

assignments on sets that are not properly discerned

by existing cliques in the graph. Not only would it

be unnatural to consider a lower probability with such

assignments to be Markov, such assignments create

technical inconsistencies.

It may be convenient or appropriate to enforce G

m

=

G

Q

, so that there is only one graph being considered,

but this is not required and not doing so may allow

additional exibility. For example, each of the two

Markov conditions might be achieved by triangulating

G

m

and G

Q

di�erently. However, because the case of

G

m

= G

Q

is of signi�cant interest, it is informative to

consider the conditions in which such a Markov de-

composition is possible. Figure 1 shows an example

of a Markov lower probability, establishing that inter-

esting Markov lower probabilities do exist (of course, a

pure probability decomposition satis�es the conditions

as well). The following establishes conditions in which

it is possible for G

m

and G

Q

to be the same graph.

Theorem 2 Let m = M[P ]. If for any decomposition

(A;B) of G and any set X 2 R with m(X) 6= 0, there

is a unique pair A 2 F

A

, B 2 F

B

, X = A

"

\ B

"

,

such that Loc

m

(m;A)(A) 6= 0 and Loc

m

(m;B)(B) 6=

0, then M[P ] is Markov on G if any only if Q[P ] is

Markov on the same graph G. When P is in�nitely-

monotone, then this is also a necessary condition for

M[P ] and Q[P ] to be Markov on the same graph.

Corollary 1 If for every decomposition (A;B) of G,

fX

A\B

:M[P ](X) 6= 0g partitions 


A\B

, then M[P ]

is Markov on G if and only if Q[P ] is Markov on the

same graph G.



For any decomposable graph G, one can e�ciently

identify a tree, J = (C;S), called a junction tree ([24]),

with the following properties

1. Each node of J contains a subset of nodes of G,

corresponding to a clique of G.

2. The intersection of all node subsets on a path of

J is equal to the intersect of the node subsets of

the path's endpoints.

Let J

m

= (C

m

;S

m

) and J

Q

= (C

Q

;S

Q

) be junction

trees for G

m

and G

Q

respectively. A clique potential,

�

C

: F

C

�! <, is attached to each node of J

m

and

J

Q

, and a separator potential, �

S

: F

S

: F

S

�! <, is

attached to each edge of J

m

and J

Q

, where the edge

is between nodes A and B and S = A \B. Denote

these �

m

and �

Q

. These potentials are initialized so

that for any A 2 F

M[P ](A) =

8

<

:

Q

C2C

m

�

m

C

(A

C

)

Q

S2S

m

�

m

S

(A

S

)

A 2 R

0 otherwise

Q[P ](A) =

Q

C2C

Q

�

Q

C

(A

C

)

Q

S2S

Q

�

Q

S

(A

S

)

(8)

It can be said that the potentials encode the joint prior

m and Q functions. The basis for this initialization

depends on the application and is not considered here.

Nevertheless, a few comments about initialization are

in order.

It is important to identify frameworks in which joint

lower probabilities can be constructed out of conve-

nient bits and pieces. For example, Bayesian net-

works provide a means for constructing joint proba-

bility distributions out of local conditional probabil-

ities. As is the case with probabilities, we envision

there being many possible frameworks that might pro-

vide convenient ways of constructing joint lower prob-

abilities from components. The only requirement is

that the joint probability be expressed in the product

form of (8). Probabilistic Markov �eld theory provides

the foundation for computation in many frameworks,

including Bayesian networks ([31]), Markov networks

([36]), chain graphs ([17]), inuence diagrams ([26]),

Markov processes and temporal probabilistic networks

([28]), etc. In the same way, the product representa-

tion here may serve as the underlying computational

foundation for a variety of application frameworks.

The particular way in which components are speci�ed

may depend on the particular goals of the application,

interpretation of the lower probabilities, desired prop-

erties of the representation, and other considerations.

The bare framework of this paper can be used directly

if the components in (8) can be assessed directly. How-

ever, it is clear that the development of more natural

frameworks is an area of research in critical need of

further attention.

4.1 Propagation

We say potentials �

m

A

and �

m

B

, A;B 2 C

m

, are con-

sistent when Loc

m

(�

m

A

;A \B) = Loc

m

(�

m

B

;A\B).

Similarly,�

Q

A

and �

Q

B

,A;B 2 C

Q

, are consistent when

Loc

Q

(�

Q

A

;A\B) = Loc

Q

(�

Q

B

;A \B).

Theorem 3 (Uniqueness) (I) Suppose for each

node C 2 C

m

of G

m

, a potential �

m

C

is speci�ed, and

that these potentials are pairwise consistent. Then

there is a unique Markov M�obius assignment, m, hav-

ing Loc

m

(m;C) = �

m

C

.

(II) Suppose for each node C 2 C

Q

of G

Q

, a potential

�

Q

C

is speci�ed, and that these potentials are pairwise

consistent. Then there is a unique Markov commonal-

ity assignment, Q, having Loc

Q

(Q;C) = �

Q

C

.

The initial potentials are not, in general, pairwise con-

sistent. The propagation algorithm leaves the joint

potential unaltered, but changes the local potentials

so that they are pairwise consistent, and therefore by

Theorem 3, the marginals can be directly read o� from

the local potentials.

The propagation of �

m

and �

Q

can each be done sepa-

rately | there is no interaction between these during

the propagation. The propagation of each occurs in

the same fashion. Here � denotes either �

m

or �

Q

,

Loc either Loc

m

or Loc

Q

, and so on.

A full propagation proceeds as follows (done for both

junction trees J

m

and J

Q

). Any node of J is cho-

sen as the root. Let d be the maximum distance in J

between the root and any other node. First, during

the collect evidence stage, each node at depth d prop-

agates potential information to its neighbor at depth

d � 1. Then each node at depth d � 1 propagates to

its neighbor at depth d� 2, and so on until the root's

neighbors have propagated to the root. Second, dur-

ing the distribute evidence stage, the root propagates

information to each of its neighbors, then they propa-

gate to each of their neighbors at depth 2, and so on

down to depth d.

A propagation step from node A 2 C to node B 2 C

occurs as follows (let S = A \B):

�

0

S

= Loc(�

A

;S)

�

0

B

(B) = �

B

(B)�

0

S

(B

S

)=�

S

(B

S

); B 2 F

B

Where we take 0=0 = 0. Then �

S

and �

B

are replaced

by �

0

S

and �

0

B

. See e.g., [12, 25, 31].

If either of the initial graphs, (G

m

;G

Q

), has discon-

nected components, it is essential that a single con-

nected junction tree be used for each J

m

and J

Q

that

includes all the disconnected components. This can

be accomplished by including an arti�cial node in the

junction tree corresponding to the null set of variables,



with F

;

= f;;
g, and connecting it to all the indi-

vidual junction trees resulting from each disconnected

component. After propagation, �

m

;

(
) = P (E) and

�

Q

;

(;) = P (E). Unlike the case with pure probability,

evidence E in one component does, in general, inu-

ence the bounds of P (AjE) even when A belongs to a

disconnected component of the graph. Therefore, con-

necting the junction trees in the manner before prop-

agation is mandatory.

Theorem 4 After a full propagation, M

�1

[�

m

C

](A) =

P (A

"

) for any C 2 C and A 2 F

C

, and Q

�1

[�

Q

C

] =

P (A

"

) for any C 2 C and A 2 F

C

.

In other words, after a full propagation, the local po-

tentials correctly encode the marginal lower probabil-

ities.

4.2 Incorporation of Evidence

When it is known that the true situation is contained

within a set E 2 F , we are interested in computing

P (A

"

jE) from the initially decomposed prior. The

information, E, must therefore be incorporated into

the local potentials. It is necessary to restrict E to

be a rectangular set on both G

m

and G

Q

. We there-

fore assume that evidence is obtained incrementally,

E = E

1

"

\E

2

"

\ ::: \E

n

"

, such that each E

i

2 F

A

i

,

A

i

� C

m

i

2 C

m

and A

i

� C

Q

i

2 C

Q

. Each E

i

can

therefore be successively incorporated, in any order,

to condition on the total evidence E.

Proposition 1 demonstrates how evidence is incorpo-

rated into the potentials. It does not refer to local

potentials, but it does naturally extend to local po-

tentials as one might expect.

Theorem 5 Let E 2 F

C

. Suppose for A 2 F ,

m(A) = �

C

(A

C

) � f(A), where �

C

: F

C

�! < and

f : F �! < are arbitrary. Suppose also that for all

A 2 F ,

m

0

(A) =

�

m(A) if A � E

"

0 otherwise

Then m

0

(A) = �

0

C

(A

C

) � f(A), where

�

0

C

(C) =

�

�

C

(C) if C � E

0 otherwise

(9)

Similarly, if Q(A) = �

C

(A

C

) � f(A), and

Q

0

(A) =

�

Q(A) if A � E

"

0 otherwise

then Q

0

(A) = �

0

C

(A

C

) �f(A) where �

0

is given by (9).

Theorem 5 says that to incorporate evidence E 2 F

A

,

it is only necessary to �nd one node C � A in each

junction tree and adjust the local potential forC. This

is done by zeroing out all local potential assignments

for sets that are not subsets of E. Evidence can thus

be locally incorporated. Note that it is not necessary

for the local potentials to be pairwise consistent |

i.e., evidence can be incorporated at any time, before

or after propagation.

There are two possible singularities that can arise

when evidence is incorporated. If P (E) = P (E) = 0,

then the event E is impossible and entirely in con-

ict with the prior lower probability assignment. This

case is quickly recognized during the propagation of �

Q

when x=0; x 6= 0 is encountered, or when some local

�

Q

(;) potential becomes zero. In this case it should be

reported that a logical contradiction has been encoun-

tered. The same singularity can, of course, occur with

pure probability. A second singularity is more subtle

and less fatal, and occurs when P (E) > P (E) = 0.

In this case, E being impossible is consistent with the

prior, but not necessarily so, so there is no logical con-

tradiction. It is entirely legitimate for this situation

to occur. It can be detected during the propagation of

�

m

when x=0; x 6= 0 is encountered or when a local m

potential, �

m

, becomes zero everywhere during prop-

agation, but when the same singularity does not occur

in �

Q

. When this happens, P (AjE) = 1 when A � E

and zero otherwise ([9]). Whether A

"

2 E can be

readily obtained from the propagated �

Q

A

from local

information, so the propagation of �

Q

should be com-

pleted. It is an inherent disadvantage of lower prob-

ability, and not of its graphical representation, that

all grades of uncertainty are lost whenever a plausibly

impossible conditioning event is encountered.

5 Conclusion

The full propagation algorithm for 2-monotone lower

probabilities can be summarized as follows:

1. Obtain undirected dependency graphs for M[P ]

and Q[P ]. These may (optionally) be di�erent

graphs.

2. Triangulate the graphs.

3. Extract junction trees for each graph.

4. Initialize junction tree potentials to encode the

prior lower probabilities according to (8). One

junction tree encodes M[P ], the other Q[P ].

5. For each local piece of evidence, �nd one node

in each junction tree that discerns that evidence.

Update these local potentials according to (9).

6. Propagate the potentials.

7. To obtain P (A

"

jE) or P (A

"

jE) for some localA 2

F

A

, read o� P (A

"

\E) directly from a local node

in the �rst junction tree, and P (A

"

\E) directly

from a local node in the second junction tree. Use

(2) to obtain P (A

"

jE) or P (A

"

jE).

Although P (AjE) appears resistant to exact decom-

position and propagation algorithms, it can be propa-

gated by breaking it into two components, P (A \ E)



and P (A \E), each of which is amenable to propaga-

tion. This central observation is from [9].

Because both M[P ] and Q[P ] must be decomposable,

it is clear that the structural requirements for decom-

posability of lower probabilities are rather strict. This

is a serious limitation. On the other hand, it is not

entirely surprising that decomposability requirements

associated with both the lower bounds as well as with

the upper bounds might exist. The fact that they can

be decomposed in di�erent ways may help to ease this

extra structural requirement somewhat.

It is important to develop frameworks in which decom-

posable lower probabilities can be naturally expressed

and constructed from smaller bits and pieces. The

double Markov requirement makes this endeavor chal-

lenging but even more important. It may also be of

interest to develop approximation methods for loos-

ening bounds in order to achieve the double Markov

condition without adding an excessive number of extra

edges.

Conditional independence properties associated with

decompositions of pure probability have been heavily

studied [17, 30, 36]. However, one should take caution

in making similar interpretations within a lower prob-

ability framework ([13]), the same intuitions do not

always transfer. It can be shown that there are severe

limitations in the ability of a lower probability repre-

sentation to express epistemological independence, the

idea that knowledge about one event should not inu-

ence the bounds for an independent event ([10]). This

has signi�cant rami�cations on the interpretation of

lower probabilities. The study of lower probability in-

terpretation is very important, particularly in the con-

text of the decomposable graphical framework where

little previous attention has been focused.

The ability to decompose and propagate lower and up-

per probabilities o�ers signi�cant potential for expand-

ing their many uses to larger applications. Further im-

provements in the tractability are severely needed and

provide many important areas for future research. A

straightforward non-parametric potential representa-

tion requires arrays of size exponential in the number

of joint assignments to the variables in a clique, since

each subset is assigned a potential value. Without

further developments, this limits the propagation algo-

rithm to graphs with very small cliques. The study of

conjugate parametric representations for lower proba-

bilities has been almost entirely overlooked, but could

be very valuable towards these ends. Even more

promising is the study of sparse representations for

M�obius and commonality assignments in the context

of propagation, i.e., where most M�obius assignments

are zero ([9]). Such an approach might allow very large

clique sizes provided that the potentials themselves are

very sparse.
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