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Abstract

It is shown that the ability of the interval

probability representation to capture episte-

mological independence is severely limited.

Two events are epistemologically indepen-

dent if knowledge of the �rst event does not

alter belief (i.e., probability bounds) about

the second. However, independence in this

form can only exist in a 2-monotone probabil-

ity function in degenerate cases | i.e., if the

prior bounds are either point probabilities or

entirely vacuous. Additional limitations are

characterized for other classes of lower prob-

abilities as well. It is argued that these phe-

nomena are a matter of interpretation. They

appear to be limitations when one interprets

probability bounds as a measure of epistemo-

logical indeterminacy (i.e., uncertainty aris-

ing from a lack of knowledge), but are ex-

actly as one would expect when probability

intervals are interpreted as representations of

ontological indeterminacy (indeterminacy in-

troduced by structural approximations).

1 Introduction

Let (
;F) be a probability space, and let P ; P :

F �! [0; 1] be set-functions on this space satisfy-

ing the following properties for any A;B 2 F with

A \B = ;:

1. P (;) = P (;) = 1, P (
) = P (
) = 1

2. P (A) + P (

�

A) = 1

3. P (A) + P (B) � P (A [B) (Super-additivity)

4. P (A) + P (B) � P (A [B) (Sub-additivity)

where

�

A denotes 
�A, the complement of A. Then P

and P are called lower and upper probability functions

respectively. It is always the case that P (A) � P (A).

It is only necessary to store one or the other of P and

P , since each can be obtained using Property 2 once

the other is known. The lower and upper probabil-

ity envelopes of a non-empty set of distributions P on

(
;F) are functions

P (A) = inffP (A) : P 2 Pg (1a)

P (A) = supfP (A) : P 2 Pg (1b)

Every lower (upper) probability envelope is a lower

(upper) probability. Thus, the lower probability rep-

resentation provides a convenient description of a set

of distributions.

A number of uses have been suggested for lower prob-

abilities, and their use is rapidly increasing. Some feel

that the use of a single exact distribution in Bayesian-

style inference fails to satisfactorily distinguish be-

tween uncertainty and ignorance or between certainty

and con�dence, and therefore a more general repre-

sentation such as lower probability functions may be

a superior representation of belief [21, 22, 24, 32, 33].

Lower probabilities may also arise from incomplete or

partial elicitation, such as when insu�cient knowledge

is available, or when it is too time consuming to obtain

obtain the necessary knowledge to warrant the preci-

sion inherent in exact probabilities [2, 16, 18]. Lower

probabilities are also useful for studying sensitivity and

robustness in probabilistic inference [1, 36, 40], and

they can be used to weigh computation e�ort against

modeling precision [9]. They arise in group decision

problems [24, 28] and in axiomatic approaches to un-

certainty when the axioms of probability are weakened

[17, 26, 33, 36]. They arise when determining con-

straints on probabilities given only the probabilities

on a �nite set of other events [14, 27]. Finally, they

may result from the abstraction of more detailed prob-

abilistic models [5, 6, 19].

This paper examines a particular problem that arises

with the use of lower probability functions when we at-

tempt to model independent events. We limit our con-

sideration to Bayesian-style updating of lower proba-

bility functions, such that when evidence E � 
 is

learned, each distribution in P is updated according

to Bayes's rule, yielding the new updated bounds

P (AjE) = inffP (AjE) : P 2 P; P (E) > 0g

P (AjE) = supfP (AjE) : P 2 P; P (E) > 0g (2)



It is often impossible to capture epistemological in-

dependence within a lower probability representation

([36] uses the term epistemic independence. Here we

follow [37] by using the term epistemological). Two

events being epistemologically independent would im-

ply that learning the truth about the �rst should

not alter belief (i.e., probability bounds) on the sec-

ond. Speci�cally, if the initial lower probability is 2-

monotone (de�ned later), we show that epistemologi-

cal independence cannot be captured unless we are in

one of the degenerate cases where P = P (i.e., the

point probability case) or P = 0 and P = 1 (the vac-

uous case). We also characterize other circumstances

in which a lower probability cannot capture this type

of independence.

We argue that the apparent inability of lower proba-

bilities to capture independence is a matter of inter-

pretation. Although we have speci�ed that the bounds

arise as extrema of P, we have not speci�ed why a set

of distributions should be considered in the �rst place.

The apparent di�culty arises from an implicit assump-

tion that the set of distributions is used to represent

some form of epistemological indeterminacy | that is,

a degree of knowledge or the lack of knowledge about

the true situation. The qualitative properties of the

lower probability representation, particularly with re-

spect to representing independence, but also in terms

of related phenomena such as dilation [29], make it

poorly matched for epistemologically-based interpre-

tations. We propose instead an alternative interpreta-

tion, whereby the bounds arise as a result of ontological

(i.e., structural) considerations. In our interpretation,

(point) probabilities capture the epistemological inde-

terminacy, but (approximate) structural assumptions

placed on a model from above introduce additional in-

determinacy with a qualitatively di�erent nature, one

in which the behavior of the bounds under condition-

ing can be logically interpreted.

2 Coin Tossing Example

Suppose we have two coins which we consider to be

physically independent of each other. We are going to

toss both coins and observe their outcomes. Each coin

has only two possibilities, fheads; tailsg, and each has

its own (unrelated) bias on the probability of landing

heads, which we know only to be between 1=4 and 3=4.

First, we wish to characterize our knowledge using a

lower probability function. We denote the four possi-

ble outcomes as 
 = fh

1

h

2

; h

1

t

2

; t

1

h

2

; t

1

t

2

g.

Since it may be the case that both coins have a 1=4

probability of heads, we assign P (fh

1

h

2

g) = 1=16.

Similarly, they may both have a 3=4 probability of

coming up heads, so we assign P (fh

1

h

2

g) = 9=16.

Carrying out this logic for all of the 16 possible sets of

outcomes, we obtain the bounds in Figure 1.

Let P(P ) denote the set of all probability distribu-

tions consistent with the bounds in Figure 1 | i.e.,
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Figure 1: Bounds on the possible joint outcomes of

two coins.
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Figure 2: Bounds after conditioning on H

1

=

fh

1

h

2

; h

1

t

2

g.

P 2 P(P ) if and only if P (A) � P (A) � P (A) for

all A � 
.

Suppose we observe the outcome of the �rst coin to

be heads without observing the outcome of the sec-

ond coin. This gives us the conditioning event H

1

=

fh

1

h

2

; h

1

t

2

g. We then update our bounds given the

new evidence as follows:

P (AjH

1

) = inffP (AjH

1

) : P 2 P(P ); P (H

1

) > 0g

P (AjH

1

) = supfP (AjH

1

) : P 2 P(P ); P (H

1

) > 0g

(3)

This yields the new bounds shown in Figure 2. Notice

the new bounds for the eventH

2

= fh

1

h

2

; t

1

h

2

g, which

were previously [1=4; 3=4], but are now [1=8; 7=8]. The

outcomes of the two coins are supposedly indepen-

dent, yet learning the outcome of the �rst coin had

a marked in
uence on our beliefs about the outcome

of the second (independent) coin. The representation

has clearly failed to capture the independence.

The inability to capture this independence is related

to the fact that P(P ) includes distributions in which

the coins are not independent. Using the set

P = fP (fx

1

x

2

g) = P

1

(fx

1

g)P

2

(fx

2

g) : x stands for

h or t; 1=4 � P

i

(fh

1

g) � 3=4; i = 1; 2g (4)

would more accurately re
ect the complete knowledge

in this example. This is what [36] calls the sensitivity

analysis approach to independence, and [11] call type-

1 independence. This (non-convex) set of probabilities

is shown graphically in Figure 3. For this set, P (H

2

),
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Figure 3: The set P shown graphically. Because the

probabilities of the four outcomes must sum to one

in each probability distribution, we can plot each dis-

tribution as a point in three dimensions. The set

P resembles a piece twisted of paper. It is non-

convex | for example, h1=16; 3=16; 3=16;9=16i and

h9=16; 3=16; 3=16; 1=16i are in P, but their average,

h5=16; 3=16; 3=16; 5=16i is not.

as de�ned by (1) and shown in Figure 1, is equal to

P (H

2

jH

1

), as de�ned by (2), so a perfect representa-

tion of P would capture the independence. However,

a primary reason for studying the lower probability

representation is for the purpose of using it as a com-

plete representation of belief. Because independence

plays a central role in many theories of subjective be-

lief, the fact that the lower probability representation

has problems capturing independence is signi�cant. In

the remainder of the paper, we will characterize this

(in)ability to capture independence and examine what

this suggests for the interpretation of the representa-

tion.

3 Lower Probability

Before examining the independence issues in more de-

tail, this section de�nes some notation and reviews

some of the basics of the lower probability repre-

sentation. The subsequent section characterizes in-

dependence issues. The properties and terminology

in this section has been developed and utilized by

[3, 4, 7, 36, 37] and others.

A lower probability is a function obeying the proper-

ties listed in the introduction. A probability distribu-

tion, P , is consistent with a lower probability P if for

every A 2 F , P (A) � P (A). We denote by P(P ) the

set of all distributions consistent with P . The con-

ditions in the introduction are not strong enough to

ensure that P(P ) 6= ;. A lower probability P

1

domi-

nates P

2

if for all A 2 F , P

1

(A) � P

2

(A), in which

case P(P

1

) � P(P

2

).

Denote the lower probability envelope P obtained

from P using (1a) by P [P]. It does not follow that

P(P [P]) = P. In other words, many di�erent sets of

distributions share the same bounds. The set P(P [P])

is called the majorization of P. When P(P [P]) = P,

P is said to be closed to majorization ([39]). When

P = P , then P is a probability distribution.

Every lower probability function is monotone (some-

times called 1-monotone), meaning that P (A) �

P (B) whenever A � B. A stronger property called

2-monotonicity is often useful. A lower probability P

is 2-monotone when for every A;B 2 F ,

P (A) + P (B) � P (A \B) + P (A [B)

Two-monotonicity is a su�cient (but not necessary)

condition to ensure that P is a lower envelope. Two-

monotonicity is usually necessary for obtaining ex-

act closed-form manipulation formula, and is therefore

usually assumed in practice.

The lower and upper probabilities conditioned on

event E 2 F are given by

P (AjE) = inffP (AjE) : P 2 P(P ); P (E) > 0g

P (AjE) = supfP (AjE) : P 2 P(P ); P (E) > 0g

It is well-known [7, 13, 15, 38, 39] that when P is

2-monotone,

P (AjE) =

P (A \E)

P (A \E) + P (

�

A \E)

P (AjE) =

P (A \E)

P (A \E) + P (

�

A \E)

(5)

whenever P (E) > 0, and P (AjE) = 1 whenever A �

E and P (E) > P (E) = 0. If P (E) = 0, then the

conditional lower probability is unde�ned.

Let 
 be �nite, F = 2




. The M�obius transform of P

is a set function m : F �! < de�ned by ([30, pg. 39])

m(A) =

X

B�A

(�1)

jA�Bj

P (B)

If m(A) � 0 for all A 2 F , then P is said to be

a belief function. Belief functions are used by the

Dempster-Shafer theory ([30]) and in the Transferable

Belief Model ([32]), but in those theories are given ev-

idential interpretations rather than the lower proba-

bilistic interpretation of interest here (see [20] and [31]

for good discriptions of the di�erence). Belief func-

tions are also what [4] terms in�nitely-monotone ca-

pacities ([34]). Every in�nitely-monotone lower prob-

ability (i.e., belief function) is also 2-monotone, but

the converse does not hold.

The M�obius transform is information preserving, so

that the original function can be recovered from m



using the inverse M�obius transform, given by

P (A) =

X

B�A

m(B)

Subsets A 2 F with m(A) 6= 0 are called the focal

elements of P .

Let P

A

and P

B

be lower probabilities on 


A

and




B

respectively. The meta-Markov combination of

P

A

and P

B

([10]), denoted P = P(P

A

)
P(P

B

),

is the set of distributions on 
 = 


A

�


B

given by

P =

8

<

:

P :

P (fabg) = P

A

(fag)P

B

(fbg);

P

A

2 P(P

A

); P

B

2 P(P

B

)

9

=

;

This is the set consisting of all independent events, i.e.,

the set shown in Figure 3 for the coin tossing example.

We also write P = P

A


P

B

for the majorization of

this set.

4 Representation of Independence

Probabilistic independence ofA and B is characterized

by either of two properties:

1. P (A \B) = P (A)P (B)

2. P (AjB) = P (A) when P (B) > 0

In the case of a probability distribution each of these

imply the other. It is not hard to see that in the case

of lower probabilities the two properties do not imply

each other, and therefore it seems natural to de�ne

independence for lower probabilities as the conjunc-

tion of both properties, i.e., A and B are independent

whenever

1. P (AjB) = P (A) and P (AjB) = P (A),

when P (B) > 0 (irrelevance)

2. P (A \B) = P (A)P (B) and

P (A \B) = P (A)P (B) (factorization)

In fact, [37] give exactly this de�nition. However, as

the subsequent theorems show, the two are often mu-

tually incompatible.

Theorem 1 When P is 2-monotone, the following

conditions cannot all hold:

1. P (A) = P (AjB)

2. P (A \B) = P (A)P (B) and

P (

�

A \B) = P (

�

A)P (B).

3. 0 < P (A) < 1

4. P (B) > P (B),

where P (AjB) = inffP (AjB) : P 2 P(P ); P (B) >

0g and A;B � 
. If any one of the four properties is

removed, the three remaining properties can co-exist.

The above shows that a 2-monotone lower probability

cannot exhibit the desired properties of independence

except in the degenerate cases where P (A) = 0 or

P (A) = 1, i.e., when P is entirely uninformative (vac-

uous) about A, or when P (B) = P (B) (i.e., P (B)

is a point probability on B).

We can demonstrate the applicability of the above the-

orem on the following example.

Example 1: [The Extended Monte Hall Problem]

Jane is a contestant on Let's Make a Deal, a game

show. Presented with four curtains, behind only one

of which is a prize, she selects Curtain 1. The host

then reveals �rst that there is nothing behind Cur-

tain 4, and second that there is nothing behind Cur-

tain 3. Making the assumptions that initially the lo-

cation of the prize is equiprobable, that the host will

always show two empty unselected curtains, that the

unselected curtain not revealed is chosen uniformly,

that the curtain order is independent of all other as-

pects of the problem, and that her knowledge about

how the curtain order is picked is characterized by

a vacuous lower probability, what is the lower prob-

ability of winning if she does not change her selec-

tion? What is the lower probability of winning if she

does change selection? Assume Jane initially captures

all the knowledge of the problem using only a lower

probability distribution, and that the frame of dis-

cernment used includes the curtain order (so that 
 =

f123; 132; 124; 142; 134;143;234; 243;324;342; 423; 432g

where ijk abbreviates \the prize is behind i, the host

reveals �rst j and second k).

The information stated above is encoded in the lower

probability function with the M�obius transform focal

elements

m(f123; 132g) = m(f124; 142g) = m(f134; 143g) = 1=12

m(f234; 243g) = m(f324; 342g) = m(f423; 432g) = 1=4

(6)

The initial lower probability is in this case a belief

function, and therefore 2-monotone. Conditions 1, 2,

4, and 5 of Theorem 1 are satis�ed, so by observing

the order in which the curtains are revealed, we know

her lower probability for each of the two questions is

e�ected. In particular, after observing the revealed

curtains and their order, her remaining belief becomes

vacuous, i.e.,

P (f134; 143gjf143; 243g) = P (f234; 243gjf143;243g) = 0

P (f134; 143gjf143; 243g) = P (f234; 243gjf143;243g) = 1

Had she ignored curtain order entirely, using 
 =

f12; 13; 14; 21; 31; 41g, where ij abbreviates \the prize

is behind i, the host does not reveal j," her �nal be-

liefs (according to Bayes's rule) are that she'd have

a point-probability of 3=4 of winning if she changes

her selection, or a point-probability of 1=4 if she does

not change. Once again, the result should be com-

pletely independent of the curtain order, but in the



lower probability representation the in
uence can be

quite dramatic.

Theorem 1 covers a wide class of lower probabilities

that are of great interest. However, there are in ad-

dition lower probability functions that are not even

2-monotone, but for which independence properties

cannot hold. The lower probability in the initial coin

tossing example (Figure 1) was such an example | it

is not 2-monotone. Therefore, it is possible to obtain

further characterizations for when the independence

properties cannot co-exist. The following characteri-

zation covers the coin tossing example.

Theorem 2 Suppose P(P ) is the set of distributions

consistent with P , and let A;B � 
. If there exists

a P 2 P(P ) such that P (A) = P (A), P (B) > 0 and

P (A) > P (AjB), then P (A) > P (AjB).

Dually, if there exists a P 2 P(P ) such that P (A) =

P (A) and P (A) < P (AjB), then P (A) < P (AjB).

That Theorem 2 covers the initial coin tossing ex-

ample is immediately seen with the distribution

h1=16; 3=8; 3=16; 3=8i, which is consistent with the

bounds in Figure 1 and satis�es the conditions in The-

orem 2.

Theorem 2 is closely related to [29, Theorems 2 and 3]

which state virtually identical conditions under which

B will dilate the lower probability bounds (i.e., the

posterior bounds after updating on B will strictly con-

tain the prior bounds). Clearly, if the bounds dilate

on an event that is supposed to be independent, the

lower probability is not exhibiting the independence

properties. However, the connection between dilation

and independence is actually closer than this. For ex-

ample, [29, Theorem 1] shows that dilation can only

occur if the set of distributions with the desired in-

dependence property intersects the set of consistent

distributions. The following theorem emphasizes this

connection between the independence properties and

dilation | independent events cannot cause a set of

independent distributions to contract.

Theorem 3 Let P = P

A


 P

B

, with P (AjB)

given by (2). (Similarly for P ). Then for A =

A

0

� 


B

and B = 


A

� B

0

, where A

0

� 


A

and

B

0

� 


B

:

1. P (A \B) = P (A)P (B)

2. P (A \B) = P (A)P (B)

3. P (AjB) � P (A) � P (A) � P (AjB)

In addition to the connection with dilation (Items 3

and 4), Items 1 and 2 of Theorem 3 demonstrate that

the factorization property of independence is always

a property of lower probabilities when we are dealing

with independent events. Recall that these conditions

appeared in Theorem 1.

The idea that information about one fact should not

in
uence beliefs regarding certain other facts is an im-

portant component in many formalizations of knowl-

edge representation. The theorems in this section

demonstrate that the lower probability representation

often cannot exhibit this property except in degenerate

cases.

An alternative version of epistemological independence

is possible. Instead of requiring that independent

events do not a�ect conditioned probability bounds,

events can be called independent whenever P (AjB) �

P (B). This version is identi�ed by [12, De�nition 4.3]

with the rationale that independent events should not

contribute additional information, a requirement that

is much weaker than the irrelevance requirement. This

weaker requirement is compatible with the factoriza-

tion property and, as evidenced by the results of

this section, is a preferable property for independence

within the lower probability framework. It also should

be noted that while [37] de�ne independence as hav-

ing both properties hold, [36] de�nes epistemological

independence as the �rst property (irrelevance) only.

5 Abstraction

This section examines factorization and the relation-

ship between a factored lower probability and its con-

sistent probability distributions. This relationship is

central to the interpretation of lower probability con-

sidered in the subsequent section.

Let P

�

be an arbitrary probability distribution on 
 =




A

� 


B

. Speci�cally, it is not necessarily the case

that A ?? B[P

�

] (that A is independent of B with

respect to P

�

).

De�nition 1 A lower probability P on 
 is an ab-

straction of P

�

relative to the assertion A ??B when

1. P

�

2 P(P )

2. P = P

A


 P

B

where P

A

is a lower probability on 


A

, P

B

is a

lower probability on 


B

. P is a proper abstraction

if it is not dominated by any other abstraction of P

�

relative to A ?? B.

It is worth emphasizing that an abstraction is factoriz-

able (Item 2) and captures information about P

�

with-

out introducing information that is not implied by P

�

.

No abstraction can capture strictly more information

than a proper abstraction without introducing infor-

mation that is not implied by P

�

; however, a proper

abstraction is not unique | there may be an arbitrar-

ily large number of proper abstractions relative to a

single independence assertion, and each of these may

contain information not contained by the others. Note

that by de�nition, any abstraction is closed to ma-

jorization.



Theorem 3 has already revealed that P (A \ B) =

P (A)P (B). This does not, however, describe the

lower probability of non-rectangular sets (those which

cannot be written as A�B). The full characterization

of all sets is most conveniently stated in terms of the

M�obius transform.

Theorem 4 If P is an abstraction of a distribution

P relative to A ?? B, and m is the M�obius transform

of P , then

m(X) =

(

m

A

(A)m

B

(B) when

X = A� B;

A � 


A

; B � 


B

0 otherwise

where m

A

and m

B

are the M�obius transforms of P

A

and P

B

, P

A

(A) = P (A � 


B

), and P

B

(B) =

P (


A

�B).

Theorem 4 does not require the abstraction to be

proper.

It is possible to generalize the concept of an abstrac-

tion relative to a single independence assertion to the

concept of an abstraction relative to a set of con-

ditional independence assertions. This introduces a

number of complications beyond the scope of the cur-

rent paper. A general concept of factorization (decom-

position) of lower probabilities is developed in [8].

The concept of a proper abstraction immediately

suggests an interpretation for probability bounds |

namely, that a lower probability is an abstraction of

some (more detailed) probability distribution. The ex-

act identity of this distribution is lost | it is known

only to be in P(P ). The next section develops this

interpretation.

6 The Ontological Interpretation

This section introduces an interpretation of lower

probability. This interpretation resolves many of the

apparent limitations discussed above, and provides an

interpretation that suggests important uses for lower

probabilities.

Let us assume that a probability or a lower probabil-

ity function is to serve as a model of some system or

phenomena, as is often the case. Models are by their

very nature approximations or abstractions of the ac-

tual system being modeled, and as such they bring

with them a certain amount of indeterminacy. By in-

cluding probabilities or lower probabilities in the de-

scription of the model, we often aim to quantify this

indeterminacy explicitly.

Constructing a model of a system involves two basic

steps: (1) Choosing an ontology, and (2) Filling in

the knowledge required by the ontology. An ontol-

ogy speci�es the language used to describe the system,

as well as structural and parametric assumptions that

are built into the model. We can think of an ontol-

ogy as identifying a set of parameters that must be

�lled in to specify the actual knowledge of the partic-

ular system being modeled, as well as a set of variables

that are used to describe particular problem instances.

The ontology (alone) leaves the values of the param-

eters unspeci�ed, for this is the epistemological infor-

mation. Once the parameters are speci�ed, the model

is completely speci�ed, and the ontology relates these

parameters to each other and to the problem instance

variables. We refer to these two levels as the ontologi-

cal level and the epistemological level.

In the case where two coins are tossed, choices at the

ontological level include assuming that exactly one of

only two possible outcomes can occur for each coin,

that the outcome of each coin can be characterized by a

single probability, that outcomes of consecutive tosses

are independent of one another and of the other coin.

These correspond to choices of language, parametric

assumptions, and structural assumptions respectively.

This ontology requires two parameters to be �lled in to

completely specify the model. The values for the two

coins' biases are the knowledge at the epistemological

level.

Indeterminacy in a model can arise at either level, and

we refer to these as ontological indeterminacy or epis-

temological indeterminacy (these terms were coined by

[37]). However, ontological indeterminacy can only ex-

ist when there is epistemological indeterminacy, be-

cause otherwise our model is nothing more than an

exact description of the true situation.

Probability provides a very good representation for

epistemological indeterminacy. We argue, therefore,

that (non-point) lower probabilities are inappropri-

ate for quantifying pure epistemological indetermi-

nacy. This viewpoint is much along the lines of a strict

\Bayesian" interpretation of probability, and in stark

contrast to epistemological interpretations of proba-

bility bounds o�ered by [18, 20, 21, 23, 24, 25], and

others, in which imprecision arises from a de�ciency of

knowledge or training data. Under our proposed inter-

pretation, interval probability bounds arise only as a

result of ontological indeterminacy, i.e., structural as-

sertions that are only approximately true. Thus, when

given a lower probability function, we immediately in-

terpret non-point intervals as a re
ection of ontologi-

cal indeterminacy, and probabilities as a re
ection of

epistemological indeterminacy.

The relationship between epistemological and ontolog-

ical indeterminacy can be visualized as follows. The

epistemological indeterminacy of a rational, coherent

agent is quaniti�ed by a probability distribution P

�

.

P

�

can be thought of as the agent's deepest beliefs,

but these might not be easily accessible to a resource-

bounded agent. Inferences are performed using a

model that includes ontological assumptions conve-

nient for the problem(s) being solved. The model used

by the agent is an abstraction of P

�

relative to the on-

tology's independence assertions. Ideally it is a proper

abstraction so that a minimal amount of additional in-



determinacy is introduced by the abstraction.

It has been said that \the assumption of conditional

independence is usually false" [35]. By asserting a con-

ditional independence assertion, an agent is more typ-

ically asserting a belief that two events are almost con-

ditionally independent given a third. An agent might

assume, for example, that gravitational acceleration is

independent of an object's height because it results in a

useful model, even though deep down at the epistemo-

logical level the agent does not believe they are truly

independent. The result of this structural approxima-

tion is that ontological indeterminacy is introduced.

6.1 Coin Tossing Revisited

It is instructive to apply this interpretation to the coin

tossing example considered earlier. Consider the prob-

ability distribution, P

�

, given by

P

�

(fh

1

h

2

g) = P

�

(ft

1

t

2

g) = 7=16

P

�

(ft

1

h

2

g) = P

�

(fh

1

t

2

g) = 1=16 (7)

This probability distribution quanti�es epistemologi-

cal indeterminacy. Since there is no structure (i.e.,

no independence or parametric restriction), there is

no ontological indeterminacy, so the point probability

on the joint space captures all the agent's uncertainty.

If a rational agent had unlimited time and resources

to access and compute the rami�cations of its deep-

est beliefs, P

�

is the full assessment of beliefs it would

obtain.

However, suppose the agent models the coins as in-

dependent. From (7), it is clear the agent does not

really believe the coins to be independent | this is a

structural approximation. There are several possible

rationale for the agent imposing this arti�cial struc-

ture on its model: to simplify (factorize) computation,

to reduce the number of parameters that must be as-

sessed, to obtain a structure that is better suited for

explanation, to reason at di�erent hierarchical levels

of abstraction, etc.

The agent adopts (or subjectively estimates) a proper

abstraction of P

�

relative to this independence asser-

tion. An in�nite number of proper abstractions are

possible, one of which is obtained by setting P (H

1

) =

P (H

2

) = P (T

1

) = P (T

2

) = 1=4, which is shown in

Figure 4. The lower probability in Figure 1 contains

M�obius assignments on two non-rectangular sets, but

is otherwise comparable to the lower probability of Fig-

ure 4. In [12], de Campos and Huete call Figure 4 a

type-2 product, and Figure 1 a type-1 product, and

relate the two with their Proposition 3.6.

When inference is performed using P , one should not

assume anything about P

�

except what is implied as a

result of P being an abstraction of P

�

. So, for exam-

ple, P is also a proper abstraction of the distribution

P (fh

1

h

2

g) = P (ft

1

t

2

g) = 1=16

P (ft

1

h

2

g) = P (fh

1

t

2

g) = 7=16 (8)
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Figure 4: Bounds encoding ontological indeterminacy

for two independent coins.

Any inference from P should be valid for P as well as

for P

�

.

Suppose the agent observes the outcome of the �rst

coin to be heads, without observing the outcome

of the second coin. P (H

2

jH

1

) should bound the

conditional probability P (H

2

jH

1

) for any more de-

tailed probabilistic model, and the bound must be

valid for any consistent distribution. For example,

P

�

(H

2

jH

1

) = 7=8, but if P is the distribution of (8)

then P (H

2

jH

1

) = 1=8. In full, the desired conditional

lower probability is indeed that given by (3) and shown

in Figure 2. In other words, under the ontological in-

terpretation of lower probability, the bounds that pre-

viously seemed to present a paradox are in fact the

desired conditional bounds. These new bounds are

guaranteed to be consistent with any (ontologically)

more detailed model.

The apparent paradox with the coin tossing example

of Section 2 only appears paradoxical because of an

implicit assumption that the lower probabilities are

representing a form of epistemological indeterminacy.

By interpreting the intervals of a lower probability as

representing ontological indeterminacy, the results of

conditioning are precisely what we would expect and

desire.

6.2 Monte Hall Revisited

In the Monte Hall example, observing the order in

which curtains are revealed causes Jane's belief about

the prize's location to change from a point probabil-

ity to total ignorance. This occurs despite the fact

that curtain order is modeled as independent of the

prize's location. This result, however, is quite reason-

able when the lower probability is given an ontological

interpretation. We must assume that independence

between curtain order and prize location is imposed in

order to factorize the lower probability. Furthermore,

they are not independent at the epistemological level,

for if they were, the belief would be characterized by

point bounds.

The lower probability of (6) is an abstraction of a more

re�ned model in which the host encodes the exact lo-

cation of the prize with the selection of curtain order.



For example, if the prize is behind the lower numbered

unrevealed curtain, the curtains opened are revealed

with the lowest numbered revealed �rst. This more

re�ned model is certainly consistent with (6), as is the

one where the encoding is reversed.

By adopting the beliefs in (6), Jane must believe that

deep down, given enough time and thought, she can

�gure out how the host encodes the prize's location.

The vacuous bounds simply indicate that the use of

a more detailed model is certainly warranted for this

problem. The assertion that the identity of the curtain

not revealed is independent of the order the curtains

are revealed hardly an approximation| it is blatantly

false | and as a result, vacuous bounds result.

7 Conclusion

Lower probabilities are utilized for a great number of

purposes within the robust statistics and uncertain in-

ference communities.

However, the results here demonstrate that the rep-

resentation has signi�cant limitations in its ability to

represent epistemological independence, the idea that

knowledge of one event should not in
uence belief

about a second event. Theorem 1 showed that inde-

pendence of this type can never be represented by a

2-monotone lower probability unless the bounds are

tight (i.e., a point probability), or the bounds are to-

tally vacuous. Theorem 2 shows that this limitation

extends to an even wider class of lower probabilities,

and Figure 3 suggests the limitations extend even to

more general representations of convex sets of proba-

bility distributions.

These limitations almost appear to be paradoxical.

However, they are only paradoxes when one interprets

probability bounds as an indication of epistemological

indeterminacy. For example, one often sees it said that

lower probabilities are useful because point probabil-

ities require more precision than available knowledge

warrants. The results deal a blow to epistemologi-

cal interpretations such as this. When lower probabil-

ity is appropriately interpreted, these limitations and

the unusual in
uence of independent events on prob-

ability bounds is entirely natural and fully consistent

with the interpretation. The ontological interpretation

says simply that epistemological indetermancy (uncer-

tainty due to lack of total knowledge) is appropriately

represented by a pure probability distribution. When

structural approximations are asserted, ontological in-

determinacy is introduced. The lower probability rep-

resentation captures this ontological indeterminacy.

Several other concepts of independence for lower and

upper probabilities, as well as for more general sets

of probabilities, are also possible ([11, 12]). There

are also several possible types of products that can

be formed from marginal lower probability representa-

tions, and these result in various relationships between

independence concepts and product formula. These

relationships are studied in [12] and [36, Section 9.3].

In some cases it may be appropriate for an agent to

fully assess its epistemological indeterminacy, thus ob-

taining a probability distribution P

�

, and then only

later abstract this to a lower probability relative to a

more structured or simpli�edmodel. This form of hier-

archical reasoning can reduce the computational e�ort

for solving speci�c inferences considerably. Further-

more, for any given inference, the bounds obtained give

a quantitative indication of how much precision was

lost by using the abstract model, and this in turn gives

an indication of whether an answer from the current

level of abstraction is su�cient. However, fully assess-

ing epstemological indeterminacy �rst is not entirely

necessary. It is also conceivable that bounds them-

selves are subjectively estimated without �rst estimat-

ing P

�

, perhaps by considering only the most extreme

situations that violate structural approximations. A

precise interpretation is important when making such

subjective assessments, since it provides a conceptual

basis for chosing speci�c bounds.

Concepts of independence are central to probabilistic

reasoning, and are especially important when it comes

to scaling to large domains. A thorough understand-

ing of independence and how it can be properly utilized

is equally important to lower probabilistic reasoning.

The ontological interpretation may provide a useful

foundation for utilizing abstraction and structural ap-

proximation in the context of probabilistic inference,

ideas that are also important when scaling probabilis-

tic inference to very large domains.
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